This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102365 #25 Jan 22 2020 21:07:13 %S A102365 1,1,0,1,1,0,1,5,1,0,1,18,15,1,0,1,58,129,37,1,0,1,179,877,646,83,1,0, %T A102365 1,543,5280,8030,2685,177,1,0,1,1636,29658,82610,56285,10002,367,1,0, %U A102365 1,4916,159742,756218,919615,335162,34777,749,1,0 %N A102365 Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938. %C A102365 Generalized Eulerian numbers A008292. %C A102365 Reversal of A211399. - _Philippe Deléham_, Feb 12 2013 %H A102365 G. C. Greubel, <a href="/A102365/b102365.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A102365 T(n, k) = (n-k)*T(n-1, k-1) + (2*k+1)*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. %F A102365 Sum_{k>=0} T(n, k)*2^k = A001147(n). %F A102365 Sum_{k>=0} T(n, k) = A014307(n). - _Philippe Deléham_, Mar 19 2005 %e A102365 Triangle begins: %e A102365 1; %e A102365 1, 0; %e A102365 1, 1, 0; %e A102365 1, 5, 1, 0; %e A102365 1, 18, 15, 1, 0; %e A102365 1, 58, 129, 37, 1, 0; ... %t A102365 T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* _G. C. Greubel_, Jun 30 2017 *) %Y A102365 Diagonals: A000007, A000012, A050488, A142965, A142966. %Y A102365 Columns: A000012, A000340, A156922, A156923, A156924. %K A102365 nonn,easy,tabl %O A102365 0,8 %A A102365 _Philippe Deléham_, Feb 22 2005