cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102375 Decimal expansion of reciprocal of the smallest positive zero of sum_{j>0} f(j) where f(j)=[(-1)^(j+1)]*x^(2^(j+1)-2-j)/[(1-x)(1-x^3)(1-x^7)...(1-x^(2^j-1))].

Original entry on oeis.org

1, 7, 9, 4, 1, 4, 7, 1, 8, 7, 5, 4, 1, 6, 8, 5, 4, 6, 3, 4, 9, 8, 4, 6, 4, 9, 8, 8, 0, 9, 3, 8, 0, 7, 7, 6, 3, 7, 0, 1, 3, 6, 4, 4, 1, 8, 2, 6, 5, 1, 3, 5, 5, 6, 4, 7, 1, 4, 1, 2, 9, 1, 4, 5, 8, 8, 1, 1, 0, 1, 1, 5, 3, 4, 1, 6, 7, 4, 3, 5, 8, 7, 9, 1, 1, 5, 2, 7, 5, 8, 7, 5, 7, 2, 8, 2, 5, 1, 5, 5
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    digits = 103; m0 = 5; dm = 2; Clear[f, g]; f[x_, m_] := Sum[((-1)^(j + 1)*x^( 2^(j + 1) - 2 - j))/Product[1 - x^(2^k - 1), {k, 1, j}] , {j, 1, m}] // N[#, digits]&; g[m_] := g[m] = (1/x /. FindRoot[f[x, m] == 1, {x, 5/9, 4/9, 6/9}, WorkingPrecision -> digits ]); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], Print["m = ", m]; m = m + dm]; RealDigits[g[m], 10, digits] // First (* Jean-François Alcover, Jun 19 2014 *)

Formula

1.79414718754168546349846498809380776370136441826513556471412914588110115...