A102402 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k ascents of length 2.
1, 1, 1, 1, 2, 3, 6, 6, 2, 17, 15, 10, 46, 51, 30, 5, 128, 175, 91, 35, 372, 568, 336, 140, 14, 1109, 1827, 1296, 504, 126, 3349, 5980, 4785, 2010, 630, 42, 10221, 19833, 17215, 8415, 2640, 462, 31527, 66078, 61908, 34210, 11385, 2772, 132, 98178, 220649, 223444, 134706, 50908, 13299, 1716
Offset: 0
Examples
T(4,2) = 2 because we have UUDDUUDD and UUDUUDDD, where U=(1,1) and D=(1,-1). Triangle begins: 1; 1; 1, 1; 2, 3; 6, 6, 2; 17, 15, 10;
Links
Programs
-
Mathematica
m = 14; G[, ] = 0; Do[G[t_, z_] = 1 + G[t, z]^2 z + G[t, z]^2 t z^2 - G[t, z]^2 z^2 + G[t, z]^3 z^3 - G[t, z]^3 t z^3 + O[t]^m + O[z]^m, {m}]; CoefficientList[#, t]& /@ Take[CoefficientList[G[t, z], z], m] // Flatten (* Jean-François Alcover, Oct 05 2019 *)
Formula
G.f.: G=G(t,z) satisfies z^3*(1-t)G^3+z(1-z+tz)G^2-G+1=0.
Comments