A102404 Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 1 starting at an even level.
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 5, 3, 0, 1, 14, 14, 9, 4, 0, 1, 39, 46, 27, 14, 5, 0, 1, 114, 143, 101, 44, 20, 6, 0, 1, 339, 466, 341, 184, 65, 27, 7, 0, 1, 1028, 1524, 1212, 664, 300, 90, 35, 8, 0, 1, 3163, 5043, 4279, 2539, 1145, 454, 119, 44, 9, 0, 1, 9852, 16812, 15206, 9564, 4665, 1819, 651, 152, 54, 10, 0, 1
Offset: 0
Examples
T(3,1)=2 because we have (U)DUUDD and UUDD(U)D, where U=(1,1), D=(1,-1) and the ascents of length 1 starting at an even level are shown between parentheses.
Programs
-
Mathematica
m = 12; G[_] = 0; Do[G[z_] = -((G[z]^2 z ((t-1)z - 1)^2 + 1)/((t-1)z^2 + (t-1)z - 1)) + O[z]^m, {m}]; CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Flatten (* Jean-François Alcover, Nov 15 2019 *)
Formula
G.f.: G=G(t, z) satisfies z*(1+z-tz)^2*G^2 - (1 + z + z^2 - tz - tz^2)*G + 1 = 0.
Comments