cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102410 Odd triangle n!. This table read by rows gives the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+2, where k=[2*n+3+(-1)^n]/4 and T(i,k) satisfies n! = Sum_{i=1..k+2} T(i,k) * n^(i-1) / (2*k-2)!.

This page as a plain text file.
%I A102410 #16 Jun 16 2016 23:27:27
%S A102410 1,0,0,-6,3,1,0,2400,-2024,264,32,0,2570400,909720,-666540,55800,3420,
%T A102410 0,-19071521280,12195884736,-762499920,-282106440,22425480,741384,840,
%U A102410 -219303218534400,-11953192930560,27128332828800,-2808016545600,-125442525600,14164990560,280576800
%N A102410 Odd triangle n!. This table read by rows gives the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+2, where k=[2*n+3+(-1)^n]/4 and T(i,k) satisfies n! = Sum_{i=1..k+2} T(i,k) * n^(i-1) / (2*k-2)!.
%C A102410 Incidentally, the sum of signed coefficients for each k-th row is divisible by (2*k-2)!.
%e A102410 Triangle starts:
%e A102410 1, 0, 0;
%e A102410 -6, 3, 1, 0;
%e A102410 2400, -2024, 264, 32, 0;
%e A102410 2570400, 909720, -666540, 55800, 3420, 0;
%e A102410 -19071521280, 12195884736, -762499920, -282106440, 22425480, 741384, 840;
%e A102410 ...
%e A102410 11!=39916800; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing 11!.
%e A102410 => 11! = [ -219303218534400 -11953192930560*11 +27128332828800*11^2 -2808016545600*11^3 -125442525600*11^4 +14164990560*11^5 +280576800*11^6 +453600*11^7 ]/10! = 39916800.
%Y A102410 Cf. A102409, A008276, A094216, A000142, A094638, A101751, A102411, A102412, A101752, A003422, A101559, A101032, A099731.
%K A102410 sign,tabf,uned
%O A102410 1,4
%A A102410 _André F. Labossière_, Jan 07 2005