This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102425 #19 Jul 22 2018 20:36:23 %S A102425 1,0,1,2,2,4,6,6,12,16,20,28,40,48,69,91,111,150,197,238,319,398,493, %T A102425 634,792,968,1226,1510,1846,2293,2811,3395,4197,5079,6126,7469,8993, %U A102425 10781,13051,15593,18627,22333,26598,31571,37655,44569,52702,62462 %N A102425 Let pi be an unrestricted partition of n with the summands written as binary numbers; a(n) is the number of such partitions with an even number of binary ones. %H A102425 Alois P. Heinz, <a href="/A102425/b102425.txt">Table of n, a(n) for n = 0..1000</a> %e A102425 a(5) = 4 because there are 4 partitions of 5 whose binary representations have an even number of binary ones, namely 101, 100+1, 11+1+1, 10+1+1+1. %p A102425 p:= proc(n) option remember; local c, m; %p A102425 c:= 0; m:= n; %p A102425 while m>0 do c:= c +irem(m, 2, 'm') od; %p A102425 c %p A102425 end: %p A102425 b:= proc(n,i,t) option remember; %p A102425 if n<0 then 0 %p A102425 elif n=0 then 1-t %p A102425 elif i=0 then 0 %p A102425 else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2)) %p A102425 fi %p A102425 end: %p A102425 a:= n-> b(n, n, 0): %p A102425 seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 21 2011 %t A102425 Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],EvenQ[Count[#,1]]&]],{n,0,40}] (* _Geoffrey Critzer_, Sep 28 2013 *) %o A102425 (PARI) seq(n)={apply(t->polcoeff(lift(t), 0), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ _Andrew Howroyd_, Jul 20 2018 %Y A102425 Cf. A000041, A000120, A102437. %K A102425 nonn %O A102425 0,4 %A A102425 _David S. Newman_, Feb 23 2005