This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102430 #13 Oct 12 2019 21:14:55 %S A102430 2,2,2,4,2,2,4,2,2,2,6,3,2,2,2,6,3,2,2,2,2,10,3,3,2,2,2,2,10,5,3,2,2, %T A102430 2,2,2,14,5,3,3,2,2,2,2,2,14,5,3,3,2,2,2,2,2,2,20,7,4,3,3,2,2,2,2,2,2, %U A102430 20,7,4,3,3,2,2,2,2,2,2,2,26,7,4,3,3,3,2,2,2,2,2,2,2 %N A102430 Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1. %C A102430 All entries above main diagonal are = 1. %H A102430 Alois P. Heinz, <a href="/A102430/b102430.txt">Rows n = 2..500, flattened</a> %F A102430 T(1, k) = 1, T(n, 1) = choose(2n-1, n), T(n>1, k>1) = T(n-1, k) + (T(n/k, k) if k divides n, else 0) %e A102430 The T(9,3)=5 partitions of 9 into powers of 3: 111111111, 1111113, 11133, 333, 9. %e A102430 From _Gus Wiseman_, Jun 07 2019: (Start) %e A102430 Triangle begins: %e A102430 2 %e A102430 2 2 %e A102430 4 2 2 %e A102430 4 2 2 2 %e A102430 6 3 2 2 2 %e A102430 6 3 2 2 2 2 %e A102430 10 3 3 2 2 2 2 %e A102430 10 5 3 2 2 2 2 2 %e A102430 14 5 3 3 2 2 2 2 2 %e A102430 14 5 3 3 2 2 2 2 2 2 %e A102430 20 7 4 3 3 2 2 2 2 2 2 %e A102430 20 7 4 3 3 2 2 2 2 2 2 2 %e A102430 26 7 4 3 3 3 2 2 2 2 2 2 2 %e A102430 26 9 4 4 3 3 2 2 2 2 2 2 2 2 %e A102430 36 9 6 4 3 3 3 2 2 2 2 2 2 2 2 %e A102430 36 9 6 4 3 3 3 2 2 2 2 2 2 2 2 2 %e A102430 46 12 6 4 4 3 3 3 2 2 2 2 2 2 2 2 2 %e A102430 Row n = 8 counts the following partitions: %e A102430 8 3311 44 5111 611 71 8 %e A102430 44 311111 41111 11111111 11111111 11111111 11111111 %e A102430 422 11111111 11111111 %e A102430 2222 %e A102430 4211 %e A102430 22211 %e A102430 41111 %e A102430 221111 %e A102430 2111111 %e A102430 11111111 %e A102430 (End) %p A102430 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<0, 0, %p A102430 b(n, i-1, k)+(p-> `if`(p>n, 0, b(n-p, i, k)))(k^i))) %p A102430 end: %p A102430 T:= (n, k)-> b(n, ilog[k](n), k): %p A102430 seq(seq(T(n, k), k=2..n), n=2..20); # _Alois P. Heinz_, Oct 12 2019 %t A102430 Table[Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]],{n,2,10},{k,2,n}] (* _Gus Wiseman_, Jun 07 2019 *) %Y A102430 Cf. A102431, A102432, A102433, A102434, A001700, A018819, A062051, A008645, A008650, A008652, A008648. %Y A102430 Same as A308558 except for the k = 1 column. %Y A102430 Row sums are A102431. %Y A102430 First column (k = 2) is A018819. %Y A102430 Second column (k = 3) is A062051. %Y A102430 Cf. A000961, A001597, A007916, A023894, A052410, A112344. %K A102430 easy,nonn,tabl %O A102430 2,1 %A A102430 _Marc LeBrun_, Jan 08 2005 %E A102430 Corrected and rewritten by _Gus Wiseman_, Jun 07 2019