cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102430 Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1.

This page as a plain text file.
%I A102430 #13 Oct 12 2019 21:14:55
%S A102430 2,2,2,4,2,2,4,2,2,2,6,3,2,2,2,6,3,2,2,2,2,10,3,3,2,2,2,2,10,5,3,2,2,
%T A102430 2,2,2,14,5,3,3,2,2,2,2,2,14,5,3,3,2,2,2,2,2,2,20,7,4,3,3,2,2,2,2,2,2,
%U A102430 20,7,4,3,3,2,2,2,2,2,2,2,26,7,4,3,3,3,2,2,2,2,2,2,2
%N A102430 Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1.
%C A102430 All entries above main diagonal are = 1.
%H A102430 Alois P. Heinz, <a href="/A102430/b102430.txt">Rows n = 2..500, flattened</a>
%F A102430 T(1, k) = 1, T(n, 1) = choose(2n-1, n), T(n>1, k>1) = T(n-1, k) + (T(n/k, k) if k divides n, else 0)
%e A102430 The T(9,3)=5 partitions of 9 into powers of 3: 111111111, 1111113, 11133, 333, 9.
%e A102430 From _Gus Wiseman_, Jun 07 2019: (Start)
%e A102430 Triangle begins:
%e A102430    2
%e A102430    2  2
%e A102430    4  2  2
%e A102430    4  2  2  2
%e A102430    6  3  2  2  2
%e A102430    6  3  2  2  2  2
%e A102430   10  3  3  2  2  2  2
%e A102430   10  5  3  2  2  2  2  2
%e A102430   14  5  3  3  2  2  2  2  2
%e A102430   14  5  3  3  2  2  2  2  2  2
%e A102430   20  7  4  3  3  2  2  2  2  2  2
%e A102430   20  7  4  3  3  2  2  2  2  2  2  2
%e A102430   26  7  4  3  3  3  2  2  2  2  2  2  2
%e A102430   26  9  4  4  3  3  2  2  2  2  2  2  2  2
%e A102430   36  9  6  4  3  3  3  2  2  2  2  2  2  2  2
%e A102430   36  9  6  4  3  3  3  2  2  2  2  2  2  2  2  2
%e A102430   46 12  6  4  4  3  3  3  2  2  2  2  2  2  2  2  2
%e A102430 Row n = 8 counts the following partitions:
%e A102430   8          3311       44         5111       611        71         8
%e A102430   44         311111     41111      11111111   11111111   11111111   11111111
%e A102430   422        11111111   11111111
%e A102430   2222
%e A102430   4211
%e A102430   22211
%e A102430   41111
%e A102430   221111
%e A102430   2111111
%e A102430   11111111
%e A102430 (End)
%p A102430 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<0, 0,
%p A102430       b(n, i-1, k)+(p-> `if`(p>n, 0, b(n-p, i, k)))(k^i)))
%p A102430     end:
%p A102430 T:= (n, k)-> b(n, ilog[k](n), k):
%p A102430 seq(seq(T(n, k), k=2..n), n=2..20);  # _Alois P. Heinz_, Oct 12 2019
%t A102430 Table[Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]],{n,2,10},{k,2,n}] (* _Gus Wiseman_, Jun 07 2019 *)
%Y A102430 Cf. A102431, A102432, A102433, A102434, A001700, A018819, A062051, A008645, A008650, A008652, A008648.
%Y A102430 Same as A308558 except for the k = 1 column.
%Y A102430 Row sums are A102431.
%Y A102430 First column (k = 2) is A018819.
%Y A102430 Second column (k = 3) is A062051.
%Y A102430 Cf. A000961, A001597, A007916, A023894, A052410, A112344.
%K A102430 easy,nonn,tabl
%O A102430 2,1
%A A102430 _Marc LeBrun_, Jan 08 2005
%E A102430 Corrected and rewritten by _Gus Wiseman_, Jun 07 2019