This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102436 #19 Sep 08 2022 08:45:16 %S A102436 1,5,34,223,1469,9672,63685,419329,2761042,18179883,119704137, %T A102436 788183312,5189736537,34171448333,224999452834,1481492773799, %U A102436 9754783005797,64229669677144,422915657312253,2784657839576297,18335379997029650 %N A102436 Number of matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'. %C A102436 Row sums of A102435. The number of matchings of the ladder graph L(n)=P_2 X P_n is given in A030186. %C A102436 Number of tilings of a 2xn board with squares of 2 colors and dominoes of 1 color [Katz-Stenson]. - _R. J. Mathar_, Apr 17 2009 %H A102436 Colin Barker, <a href="/A102436/b102436.txt">Table of n, a(n) for n = 0..1000</a> %H A102436 M. Katz, C. Stenson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Stenson/stenson8.html">Tiling a 2xn-board with squares and dominoes</a>, J. Int. Seq. 12 (2009) # 09.2.2 %H A102436 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,4,-1). %F A102436 a(n) = 6*a(n-1) + 4*a(n-2) - a(n-3) for n>=3. %F A102436 G.f.: (1-x) / (1-6*x-4*x^2+x^3). %e A102436 a(2)=34 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have one 0-matching (the empty set), eight 1-matchings (each edge as a singleton), sixteen 2-matchings (see Example in A102435), eight 3-matchings (any 3-element subset of {Aa,Bb,Cc,Dd} and {Aa,Bb,CD},{Bb,Cc,AD},{Cc,Dd,AB},{Aa,Dd,BC}) and one 4-matching ({Aa,Bb,Cc,Dd}). %p A102436 a[0]:=1: a[1]:=5: a[2]:=34: for n from 3 to 24 do a[n]:=6*a[n-1]+4*a[n-2] -a[n-3] od: seq(a[n],n=0..24); %t A102436 LinearRecurrence[{6,4,-1}, {1,5,34}, 30] (* _G. C. Greubel_, Oct 27 2019 *) %o A102436 (PARI) Vec((1 - x) / (1 - 6*x - 4*x^2 + x^3) + O(x^30)) \\ _Colin Barker_, Jun 06 2017 %o A102436 (Magma) I:=[1,5,34]; [n le 3 select I[n] else 6*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..30]]; // _G. C. Greubel_, Oct 27 2019 %o A102436 (Sage) %o A102436 def A102436_list(prec): %o A102436 P.<x> = PowerSeriesRing(ZZ, prec) %o A102436 return P((1-x)/(1-6*x-4*x^2+x^3)).list() %o A102436 A102436_list(30) # _G. C. Greubel_, Oct 27 2019 %o A102436 (GAP) a:=[1,5,34];; for n in [4..30] do a[n]:=6*a[n-1]+4*a[n-2]-a[n-3]; od; a; # _G. C. Greubel_, Oct 27 2019 %Y A102436 Cf. A030186, A102435, A253265. %K A102436 nonn,easy %O A102436 0,2 %A A102436 _Emeric Deutsch_, Jan 08 2005