This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102437 #25 Jul 25 2018 10:58:13 %S A102437 0,1,1,1,3,3,5,9,10,14,22,28,37,53,66,85,120,147,188,252,308,394,509, %T A102437 621,783,990,1210,1500,1872,2272,2793,3447,4152,5064,6184,7414,8984, %U A102437 10856,12964,15592,18711,22250,26576,31690,37520,44565,52856,62292 %N A102437 Let pi be an unrestricted partition of n with the summands written in binary notation. a(n) is the number of such partitions whose binary representation has an odd number of binary ones. %H A102437 Alois P. Heinz, <a href="/A102437/b102437.txt">Table of n, a(n) for n = 0..1000</a> %e A102437 a(5) = 3 because there are 3 partitions of 5 with an odd number of binary ones in their binary representation, namely: 11+10, 10+10+1 and 1+1+1+1+1. %p A102437 p:= proc(n) option remember; local c, m; %p A102437 c:= 0; m:= n; %p A102437 while m>0 do c:= c +irem(m, 2, 'm') od; %p A102437 c %p A102437 end: %p A102437 b:= proc(n, i, t) option remember; %p A102437 if n<0 then 0 %p A102437 elif n=0 then t %p A102437 elif i=0 then 0 %p A102437 else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2)) %p A102437 fi %p A102437 end: %p A102437 a:= n-> b(n, n, 0): %p A102437 seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 21 2011 %t A102437 Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],OddQ[Count[#,1]]&]],{n,0,40}] (* _Geoffrey Critzer_, Sep 28 2013 *) %o A102437 (PARI) seq(n)={apply(t->polcoeff(lift(t), 1), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ _Andrew Howroyd_, Jul 20 2018 %Y A102437 Cf. A000041, A000120, A102425, A316996. %K A102437 nonn %O A102437 0,5 %A A102437 _David S. Newman_, Feb 23 2005 %E A102437 More terms from _Vladeta Jovovic_, Feb 23 2005