cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102466 Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.

This page as a plain text file.
%I A102466 #21 Jul 14 2023 15:30:35
%S A102466 2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,31,32,
%T A102466 33,34,35,37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,64,65,67,69,
%U A102466 71,73,74,77,79,81,82,83,85,86,87,89,91,93,94,95,97,101,103,106,107,109
%N A102466 Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.
%C A102466 A000005(a(n)) = A001221(a(n)) + A001222(a(n)); prime powers are a subsequence (A000961); complement of A102467; not the same as A085156.
%C A102466 Equals { n | omega(n)=1 or Omega(n)=2 }, that is, these are exactly the prime powers (>1) and semiprimes. - _M. F. Hasler_, Jan 14 2008
%C A102466 For n > 1: A086971(a(n)) <= 1. - _Reinhard Zumkeller_, Dec 14 2012
%H A102466 T. D. Noe, <a href="/A102466/b102466.txt">Table of n, a(n) for n = 1..1000</a>
%p A102466 with(numtheory):
%p A102466 q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))):
%p A102466 select(q, [$1..200])[];  # _Alois P. Heinz_, Jul 14 2023
%t A102466 Select[Range[110],DivisorSigma[0,#]==PrimeOmega[#]+PrimeNu[#]&] (* _Harvey P. Dale_, Mar 09 2016 *)
%o A102466 (Sage)
%o A102466 def is_A102466(n) :
%o A102466     return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2)
%o A102466 def A102466_list(n) :
%o A102466     return [k for k in (1..n) if is_A102466(k)]
%o A102466 A102466_list(109)  # Peter Luschny, Feb 08 2012
%o A102466 (Haskell)
%o A102466 a102466 n = a102466_list !! (n-1)
%o A102466 a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x]
%o A102466 -- _Reinhard Zumkeller_, Dec 14 2012
%o A102466 (PARI) is(n)=my(f=factor(n)[,2]); #f==1 || f==[1,1]~ \\ _Charles R Greathouse IV_, Oct 19 2015
%Y A102466 Cf. A000005, A001221, A001222, A000961, A102467, A085156,  A086971, A135767.
%K A102466 nonn
%O A102466 1,1
%A A102466 _Reinhard Zumkeller_, Jan 09 2005