cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102470 Numbers n such that denominator of Sum_{k=0 to n} 1/k! is n!.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 16, 18, 20, 26, 28, 40, 46, 48, 58, 66, 68, 70, 80, 86, 96, 98, 118, 126, 130, 136, 146, 150, 170, 176, 178, 180, 188, 190, 206, 208, 210, 216, 230, 260, 266, 268, 278, 286, 288, 300, 306, 308, 326, 328, 338, 346, 358, 366, 370, 378, 380, 388
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2005

Keywords

Comments

a(n) is even for n > 1, as Sum_{k=0 to n} 1/k! reduces to lower terms when n > 1 is odd.

Examples

			1/0! + 1/1! + 1/2! + 1/3! +1/4! = 65/24 and 24 = 4!, so 4 is a member. But 1/0! + 1/1! + 1/2! + 1/3! = 8/3 and 3 < 3!, so 3 is not a member.
		

Crossrefs

For n > 0, n is a member <=> A093101(n) = 1 <=> A061355(n) = n! <=> A061355(n) = A002034(A061355(n))! <=> A061354(n) = 1+n+n(n-1)+n(n-1)(n-2)+...+n!. See also A102471.

Programs

  • Mathematica
    fQ[n_] := (Denominator[Sum[1/k!, {k, 0, n}]] == n!); Select[ Range[0, 389], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)

Formula

a(n) = 2*A102471(n-1) for n > 1.

Extensions

More terms from Robert G. Wilson v, Jan 15 2005
Showing 1-1 of 1 results.