This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102487 #20 Feb 16 2025 08:32:55 %S A102487 0,1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,20,21,24,25,26,27,28,29, %T A102487 30,31,32,33,36,37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54,55,56, %U A102487 57,60,61,62,63,64,65,66,67,68,69,72,73,74,75,76,77,78,79,80,81,84,85,86 %N A102487 Numbers in base-12 representation that can be written with decimal digits. %C A102487 Numbers that are only in this sequence or only in A039274 but not in both are n= 131, 142, 275, 286, 419, 430 etc: see A039558. [From _R. J. Mathar_, Aug 30 2008] %H A102487 Reinhard Zumkeller, <a href="/A102487/b102487.txt">Table of n, a(n) for n = 1..10000</a> %H A102487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Duodecimal.html">Duodecimal</a> %H A102487 Wikipedia, <a href="http://en.wikipedia.org/wiki/Duodecimal">Duodecimal</a> %t A102487 fQ[n_] := Last@ Union@ IntegerDigits[n, 12] < 10; Select[ Range[0, 86], fQ] (* _Robert G. Wilson v_, Apr 17 2012 *) %o A102487 (PARI) {for(testn=0,87, %o A102487 lgt=1; %o A102487 for(i=1,1000,if(12^i > testn,lgt=i;break())); %o A102487 atst=testn;pasr=1; %o A102487 for(j=1,lgt,lasd=atst%12; %o A102487 if(lasd<10,atst=(atst-lasd)/12,pasr=0;break())); %o A102487 if(pasr==1,print1(testn,", ")))} %o A102487 \\ _Douglas Latimer_, Apr 17 2012 %o A102487 (Haskell) %o A102487 import Data.List (unfoldr) %o A102487 a102487 n = a102487_list !! (n-1) %o A102487 a102487_list = filter (all (< 10) . unfoldr (\x -> %o A102487 if x == 0 then Nothing else Just $ swap $ divMod x 12)) [0..] %o A102487 -- _Reinhard Zumkeller_, Apr 18 2011 %o A102487 (Python) %o A102487 A102487_list = [int(str(x), 12) for x in range(10**6)] # _Chai Wah Wu_, Apr 09 2016 %Y A102487 Complement of A102488; A102489, A102491, A102493. %Y A102487 Cf. A033048 (subsequence). %K A102487 nonn,base %O A102487 1,3 %A A102487 _Reinhard Zumkeller_, Jan 12 2005