This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102539 #15 Nov 17 2018 15:33:04 %S A102539 2,3,4,4,10,8,5,20,35,16,6,35,112,126,32,7,56,294,672,462,64,8,84,672, %T A102539 2772,4224,1716,128,9,120,1386,9504,28314,27456,6435,256,10,165,2640, %U A102539 28314,151008,306735,183040,24310,512,11,220,4719,75504,674817 %N A102539 Square array T(n,k) read by antidiagonals: T(n,k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1). %C A102539 Number of semistandard Young tableaux with at most n columns and with entries in [k]. %C A102539 T(n,k) is the number of k X k symmetric matrices with entries in 0..n with each row (and column) in nondecreasing order. - _R. H. Hardin_, Jul 08 2008 %H A102539 M. Lederer, <a href="http://arXiv.org/abs/math.CO/0501132">A determinant-like formula for the Kostka numbers</a> %F A102539 It appears that T is identical to the reflected triangle A073165, i.e. T(n, k) = Prod[i=1..floor((k+1)/2), C(n+k+2i-1-(k mod 2), 4i-1-2(k mod 2))] / Prod[i=0..floor((k-1)/2), C(2k-2i-1, 2i)]. %e A102539 Square array T(n,k) begins: %e A102539 2, 4, 8, 16, 32, 64, ... %e A102539 3, 10, 35, 126, 462, 1716, ... %e A102539 4, 20, 112, 672, 4224, 27456, ... %e A102539 5, 35, 294, 2772, 28314, 306735, ... %e A102539 6, 56, 672, 9504, 151008, 2617472, ... %e A102539 7, 84, 1386, 28314, 674817, 18076916, ... %e A102539 ... %t A102539 T[n_, k_] := Product[(n + i + j - 1)/(i + j - 1), {i, 1, k}, {j, i, k}]; %t A102539 Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 06 2018 *) %Y A102539 Rows include A000079, A001700, A003645, A000356. %Y A102539 Main diagonal is A049505. %K A102539 nonn,tabl %O A102539 1,1 %A A102539 _Ralf Stephan_, Jan 14 2005