cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102547 Triangle read by rows, formed from antidiagonals of the antidiagonals (A011973) of Pascal's triangle (A007318).

This page as a plain text file.
%I A102547 #59 Sep 11 2024 00:40:13
%S A102547 1,1,1,1,1,1,2,1,3,1,4,1,1,5,3,1,6,6,1,7,10,1,1,8,15,4,1,9,21,10,1,10,
%T A102547 28,20,1,1,11,36,35,5,1,12,45,56,15,1,13,55,84,35,1,1,14,66,120,70,6,
%U A102547 1,15,78,165,126,21,1,16,91,220,210,56,1,1,17,105,286,330,126,7,1,18,120
%N A102547 Triangle read by rows, formed from antidiagonals of the antidiagonals (A011973) of Pascal's triangle (A007318).
%C A102547 Row sums are A000930, antidiagonal sums are A003269.
%C A102547 Row n contains 1+floor(n/3) terms.
%C A102547 T(n,k) is the number of compositions of n+3 with k+1 parts, all at least 3. Example: T(9,2) = binomial(5,2) = 10 because we have 336, 363, 633, 345, 354, 435, 453, 534, 543, and 444. - _Emeric Deutsch_, Aug 15 2010
%C A102547 T(n+2,k) is the number of k-subsets of {1..n} with values at least 3 apart. For example, T(7,2) = 3 corresponds to the subsets {1,4},{1,5},{2,5} of {1..5}. - _Enrique Navarrete_, Dec 19 2021
%H A102547 Alois P. Heinz, <a href="/A102547/b102547.txt">Rows n = 0..250, flattened</a>
%H A102547 Michael A. Allen, <a href="https://arxiv.org/abs/2409.00624">Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings</a>, arXiv:2409.00624 [math.CO], 2024. See p. 13.
%H A102547 Richard J. Mathar, <a href="http://arxiv.org/abs/1609.03964">Tiling n x m rectangles with 1 X 1 and s X s squares</a>, arXiv:1609.03964 [math.CO], 2016, Section 4.2.
%H A102547 Richard J. Mathar, <a href="https://arxiv.org/abs/2404.18806">Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards</a>, arXiv:2404.18806 [math.CO], 2024. See p. 7.
%H A102547 Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, <a href="https://orbi.uliege.be/bitstream/2268/302524/1/isit2023.pdf">Gapped Binomial Complexities in Sequences</a>, Univ. Liège (Belgium 2023).
%F A102547 T(n,k) = binomial(n-2k,k) (0 <= k <= n/3). - _Emeric Deutsch_, Aug 15 2010
%F A102547 G.f.: 1/(1 - x)/(1 - y*x^3/(1 - x)) = 1/(1 - x - y*x^3). - _Geoffrey Critzer_, Jun 25 2014
%e A102547 Triangle begins:
%e A102547   1;
%e A102547   1;
%e A102547   1;
%e A102547   1, 1;
%e A102547   1, 2;
%e A102547   1, 3;
%e A102547   1, 4, 1;
%e A102547   1, 5, 3;
%p A102547 for n from 0 to 20 do seq(binomial(n-2*k, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form. - _Emeric Deutsch_, Aug 15 2010
%t A102547 nn=20;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-x)/(1-y x^3/(1-x)),{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Jun 25 2014 *)
%o A102547 (Magma) /* As triangle */ [[Binomial(n-2*k,k): k in [0..n div 3]]: n in [0.. 15]]; // _Vincenzo Librandi_, Jul 23 2019
%Y A102547 Cf. A007318, A011973, A003269, A000930 (row sums), A349862 (max row values).
%K A102547 nonn,tabf
%O A102547 0,7
%A A102547 _Gerald McGarvey_, Feb 24 2005