This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102556 #26 Feb 16 2025 08:32:56 %S A102556 3,15,159,867,19239,107985,1222563,6965835,319153335,1835486085, %T A102556 21185534577,122622340677,2846090375067,16550504577861, %U A102556 192854402926251,1125503935556763,105252693980913879,615999836125850637,7219077361263238917,42347454581722163361,994637701798929524937 %N A102556 Numerator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle. %H A102556 Robert Israel, <a href="/A102556/b102556.txt">Table of n, a(n) for n = 1..928</a> %H A102556 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GaussianTrianglePicking.html">Gaussian Triangle Picking</a> %F A102556 From _Robert Israel_, Sep 29 2016: (Start) %F A102556 a(n) is the numerator of p(n) = Sum_{k=n..2*n-1} binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1). %F A102556 8(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1. %F A102556 G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2-2*x). (End) %e A102556 p(n) = {3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ... }_{n >= 1}. %p A102556 p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember): %p A102556 seq(numer(p(n)),n=1..50); # _Robert Israel_, Sep 29 2016 %t A102556 a[n_] := (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Numerator; Array[a, 20] (* _Jean-François Alcover_, Mar 22 2019 *) %o A102556 (PARI) a(n) = numerator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ _Michel Marcus_, Mar 23 2019 %o A102556 (Magma) %o A102556 R<x>:=PowerSeriesRing(Rationals(), 50); %o A102556 A102556:= func< n | Numerator( Coefficient(R!( 3*x*(1-1/Sqrt(4-3*x))/(2-2*x) ), n) ) >; %o A102556 [A102556(n): n in [1..30]]; // _G. C. Greubel_, Jan 31 2025 %o A102556 (SageMath) %o A102556 def A102556(n): return ( 3*(1-1/sqrt(4-3*x))/(2*(1-x)) ).series(x,n+1).list()[n].numerator() %o A102556 print([A102556(n) for n in range(31)]) # _G. C. Greubel_, Jan 31 2025 %Y A102556 Cf. A102557 (denominators), A102558, A102559. %K A102556 nonn,frac %O A102556 1,1 %A A102556 _Eric W. Weisstein_, Jan 14 2005