cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102581 Numbers n such that denominator of Sum_{k=0 to 2n+1} 1/k! is (2n+1)!/2.

Original entry on oeis.org

1, 2, 6, 10, 30, 32, 42, 46, 56, 62, 70, 80, 82, 96, 120, 122, 136, 150, 160, 162, 170, 172, 176, 186, 192, 196, 200, 210, 222, 230, 236, 252, 262, 266, 276, 290, 292, 300, 302, 306, 312, 326, 356, 366, 380, 382, 400, 416, 422, 426, 452, 460, 486, 490, 496, 500
Offset: 1

Views

Author

Jonathan Sondow, Jan 21 2005

Keywords

Comments

The denominator of Sum_{k=0 to m} 1/k! is m!/d, where d = A093101(m). If m > 1 is odd, say m = 2n+1, then d is even. n is a member when d = 2. If m > 3 and m = 3 (mod 4), so that n > 1 is odd, then d is divisible by 4. So except for 1 the members are even.

Examples

			1/0! + 1/1! + 1/2! + 1/3! = 8/3 and 3 = (2*1+1)!/2, so 1 is a member.
		

Crossrefs

n is a member <=> A093101(2n+1) = 2 <=> A061355(2n+1) = (2n+1)!/2 <=> n = 1 or n/2 is a member of A102582.

Programs

  • Mathematica
    fQ[n_] := (Denominator[ Sum[1/k!, {k, 0, 2n + 1}]] == (2n + 1)!/2); Select[ Range[ 500], fQ[ # ] &] (* Robert G. Wilson v, Jan 24 2005 *)

Formula

a(n) = 2*A102582(n-1) for n > 1.

Extensions

More terms from Robert G. Wilson v, Jan 24 2005