This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102618 #12 Jul 10 2024 17:26:36 %S A102618 370,407,1332,2331,2960,3256,4921,5957,8029,8288,9990,10656,10989, %T A102618 12691,12913,13357,13949,14023,14911,16021,16354,17353,18648,18907, %U A102618 19684,19721,20683,22681,23680,24605,24901,26048,27343,30007,30303,32893,34965,35964,36001,36556,37259,39331,39368,39627 %N A102618 Numbers which are the sum of two positive cubes and divisible by 37. %H A102618 Robert Israel, <a href="/A102618/b102618.txt">Table of n, a(n) for n = 1..10000</a> %p A102618 N:= 200000: # for terms <= N %p A102618 G:= expand(add(x^(i^3),i=1..floor(N^(1/3)))^2): %p A102618 select(t -> coeff(G,x,t) > 0, [seq(i,i=37..N,37)]); # _Robert Israel_, Jun 12 2020 %t A102618 upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 37] == 0, Sow@ t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3) ]}]][[2, 1]]]; upto[40000] (* _Giovanni Resta_, Jun 12 2020 *) %t A102618 stpcQ[n_]:=Count[IntegerPartitions[n,{2}],_?(AllTrue[CubeRoot[#],IntegerQ]&)]>0; Select[37* Range[1100],stpcQ] (* _Harvey P. Dale_, Jul 10 2024 *) %Y A102618 Cf. A003325. Other sequences of the form "sum of two positive cubes and divisible by ...": A224484, A224485, A101421, A101852, A094447, A099178, A102619, A101806, A224483, A102658. %K A102618 nonn %O A102618 1,1 %A A102618 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 31 2005 %E A102618 Corrected by _Robert Israel_, Jun 12 2020