cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102619 Numbers which are the sum of two positive cubes and divisible by 19.

This page as a plain text file.
%I A102619 #21 Sep 08 2022 08:45:16
%S A102619 133,152,513,855,1064,1216,1729,1843,2071,2261,2413,2869,2926,3059,
%T A102619 3439,3591,4104,4123,4921,4940,5833,6175,6840,7163,7657,8512,9386,
%U A102619 9728,10773,13167,13357,13718,13832,13851,14174,14364,14744,15542,15561,16568
%N A102619 Numbers which are the sum of two positive cubes and divisible by 19.
%C A102619 If 12*h-1083 is a square then some values of 19*h are in this sequence. It is easy to verify that h is of the form 3*m^2-3*m+91, and therefore 19*(3*m^2-3*m+91) = (10-m)^3+(m+9)^3. - _Vincenzo Librandi_, May 10 2013
%H A102619 Vincenzo Librandi, <a href="/A102619/b102619.txt">Table of n, a(n) for n = 1..1000</a>
%t A102619 upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 19] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[17000] (* _Giovanni Resta_, Jun 12 2020 *)
%o A102619 (Magma) [n: n in [2..2*10^4] | exists{i: i in [1..Iroot(n-1,3)] | IsPower(n-i^3,3) and IsZero(n mod 19)}]; // _Bruno Berselli_, May 10 2013
%Y A102619 Cf. A003325, A101421 (divisible by k=7), A101852 (k=11), A094447 (k=13), A099178 (k=17), A101806 (k=23), A224483 (k=29), A102658 (k=31), A102618 (k=37).
%K A102619 nonn,easy
%O A102619 1,1
%A A102619 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 31 2005