This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102627 #16 May 21 2021 08:11:33 %S A102627 1,1,1,2,1,4,1,4,4,5,1,15,1,7,14,17,1,28,1,40,28,11,1,99,31,13,49,99, %T A102627 1,186,1,152,76,17,208,425,1,19,109,699,1,584,1,433,823,23,1,1625,437, %U A102627 1140,193,746,1,2003,1748,2749,244,29,1,7404,1,31,4158,3258,3766,6307,1 %N A102627 Number of partitions of n into distinct parts in which the number of parts divides n. %H A102627 Alois P. Heinz, <a href="/A102627/b102627.txt">Table of n, a(n) for n = 1..1000</a> %e A102627 From _Gus Wiseman_, Sep 24 2019: (Start) %e A102627 The a(1) = 1 through a(12) = 15 strict integer partitions whose average is an integer (A = 10, B = 11, C = 12): %e A102627 (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) %e A102627 (31) (42) (53) (432) (64) (75) %e A102627 (51) (62) (531) (73) (84) %e A102627 (321) (71) (621) (82) (93) %e A102627 (91) (A2) %e A102627 (B1) %e A102627 (543) %e A102627 (642) %e A102627 (651) %e A102627 (732) %e A102627 (741) %e A102627 (831) %e A102627 (921) %e A102627 (5421) %e A102627 (6321) %e A102627 (End) %p A102627 a:= proc(m) option remember; local b; b:= %p A102627 proc(n, i, t) option remember; `if`(i*(i+1)/2<n, %p A102627 0, `if`(n=0, `if`(irem(m, t)=0, 1, 0), %p A102627 b(n, i-1, t)+b(n-i, min(n-i, i-1), t+1))) %p A102627 end: `if`(isprime(m), 1, b(m$2, 0)) %p A102627 end: %p A102627 seq(a(n), n=1..100); # _Alois P. Heinz_, Sep 25 2019 %t A102627 npdp[n_]:=Count[Select[IntegerPartitions[n],Length[#]==Length[ Union[ #]]&], _?(Divisible[n,Length[#]]&)]; Array[npdp,70] (* _Harvey P. Dale_, Feb 12 2016 *) %t A102627 a[m_] := a[m] = Module[{b}, b[n_, i_, t_] := b[n, i, t] = If[i(i+1)/2 < n, 0, If[n == 0, If[Mod[m, t] == 0, 1, 0], b[n, i - 1, t] + b[n - i, Min[n - i, i - 1], t + 1]]]; If[PrimeQ[m], 1, b[m, m, 0]]]; %t A102627 Array[a, 100] (* _Jean-François Alcover_, May 21 2021, after _Alois P. Heinz_ *) %Y A102627 The BI-numbers of these partitions are given by A326669 (numbers whose binary indices have integer mean). %Y A102627 The non-strict case is A067538. %Y A102627 Strict partitions with integer geometric mean are A326625. %Y A102627 Strict partitions whose maximum divides their sum are A326850. %Y A102627 Cf. A018818, A033630, A316413, A326622, A326843, A326851. %K A102627 easy,nonn %O A102627 1,4 %A A102627 _Vladeta Jovovic_, Feb 01 2005