A102632 Smallest k such that at least one of 2^k+/-prime(n) is prime.
0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 4, 2, 1, 2, 5, 3, 1, 6, 2, 1, 4, 2, 7, 3, 2, 1, 2, 1, 2, 7, 2, 3, 1, 9, 1, 4, 4, 2, 5, 3, 1, 4, 1, 2, 1, 6, 4, 2, 1, 2, 3, 1, 4, 5, 9, 3, 1, 9, 2, 1, 6, 7, 2, 1, 2, 5, 4, 4, 1, 2, 16, 3, 4, 4, 2, 10, 3, 2, 3, 9, 1, 8, 1, 4, 2, 7, 3, 2, 1, 2, 5, 3, 2, 3, 2, 7, 5, 1, 6, 4, 4, 9, 3, 1
Offset: 1
Keywords
Examples
For prime(2)=3, 2^1+3 = 5 is prime For prime(18)=61, 2^6-61 = 3 is prime
Links
- Lei Zhou, Between 2^n and primes.
Programs
-
Mathematica
f[n_] := Block[{k = 0, p = Prime[n]}, While[ Not[(2^k - p > 1 && PrimeQ[2^k - p]) || PrimeQ[2^k + p]], k++ ]; k]; Table[ f[n], {n, 104}] (* Robert G. Wilson v, Jan 22 2005 *)
Extensions
More terms from Robert G. Wilson v, Jan 21 2005