This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102633 #23 Nov 28 2023 12:53:26 %S A102633 1,3,5,7,9,15,23,29,31,55,71,77,297,573,1301,1555,1661,4937,5579,6191, %T A102633 6847,6959,19985,26285,47093,74167,149039,175137,210545,240295,306153, %U A102633 326585,345547 %N A102633 Numbers k such that 2^k + 11 is prime. %C A102633 a(34) > 5*10^5. - _Robert Price_, Aug 26 2015 %C A102633 For numbers k in this sequence, 2^(k-1)*(2^k+11) has deficiency 12 (see A141549). All terms are odd since 4^n+11 == 1+2 == 0 (mod 3). - _M. F. Hasler_, Jul 18 2016 %H A102633 Henri Lifchitz and Renaud Lifchitz (Editors), <a href="http://www.primenumbers.net/prptop/searchform.php?form=2%5En%2B11">Search for 2^n+11</a>, PRP Top Records. %H A102633 Lei Zhou, <a href="http://www.bme.emory.edu/~lzhou/prime/">Between 2^n and primes</a>. [broken link] %e A102633 k = 1: 2^1 + 11 = 13 is prime. %e A102633 k = 3: 2^3 + 11 = 19 is prime. %e A102633 k = 2: 2^2 + 11 = 15 is not prime. %t A102633 Do[ If[ PrimeQ[2^n + 11], Print[n]], {n, 15250}] (* _Robert G. Wilson v_, Jan 21 2005 *) %o A102633 (PARI) for(n=1,9e9,ispseudoprime(2^n+11)&&print1(n",")) \\ _M. F. Hasler_, Jul 18 2016 %Y A102633 Cf. A094076, A141549. %Y A102633 Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), this sequence (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23). %K A102633 nonn,hard,more %O A102633 1,2 %A A102633 _Lei Zhou_, Jan 20 2005 %E A102633 a(18)-a(22) from _Robert G. Wilson v_, Jan 21 2005 %E A102633 a(23)-a(33) from _Robert Price_, Dec 06 2013 %E A102633 Edited by _M. F. Hasler_, Jul 18 2016