cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102639 Combinatorial triangle !n. This table read by rows gives the coefficients of general sum formulas of n-th left factorials (A003422). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k and k=1 to n-2, where T(i,k) satisfies !n = n + Sum_{k=1..n-2} Sum_{i=1..2*k} T(i,k) * C(n-k-1,i).

This page as a plain text file.
%I A102639 #11 Feb 07 2019 17:24:43
%S A102639 1,1,3,8,8,3,9,46,101,114,65,15,33,272,975,1935,2289,1615,630,105,153,
%T A102639 1796,9175,26795,49474,60080,48104,24535,7245,945,873,13424,90255,
%U A102639 353507,902164,1582455,1953272,1700860,1025927,408870,97020,10395,5913
%N A102639 Combinatorial triangle !n. This table read by rows gives the coefficients of general sum formulas of n-th left factorials (A003422). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k and k=1 to n-2, where T(i,k) satisfies !n = n + Sum_{k=1..n-2} Sum_{i=1..2*k} T(i,k) * C(n-k-1,i).
%C A102639 The coefficients T(i,k) along the i-th columns of the triangle are the consecutive partial sums of those found in table A094216.
%H A102639 Chris Zheng, Jeffrey Zheng, <a href="https://doi.org/10.1007/978-981-13-2282-2_4">Triangular Numbers and Their Inherent Properties</a>, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
%e A102639 !7 = 7 + 1*C(7-2,1) + 1*C(7-2,2) + 3*C(7-3,1) + ... + 33*C(7-5,1) + 272*C(7-5,2) + 153*C(7-6,1) = 7 + 5 + 10 + 12 + 8*C(4,2) + 8*C(4,3) + 3*C(4,4) + 9*C(3,1) + 46*C(3,2) + 101*C(3,3) + 66 + 272 + 153 = 7 + 5 + 10 + 12 + 48 + 32 + 3 + 27 + 138 + 101 + 66 + 272 + 153 = 874.
%Y A102639 Cf. A094216, A102411, A102412, A101752, A003422, A094638, A008276.
%K A102639 nonn,tabl
%O A102639 1,3
%A A102639 _André F. Labossière_, Feb 01 2005