A102640 Compute the greatest prime factors (GPFs, A006530()) of j + 2^n for j = 0, 1, ..., L. a(n) is the maximal length L of such a sequence in which the greatest prime factors are increasing with increasing j.
2, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 3, 3, 6, 2, 3, 2, 4, 2, 2, 3, 4, 2, 3, 3, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 3, 4, 4, 2, 4, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 4, 4, 2, 4, 2, 3, 2, 2, 4, 4, 2, 3, 3, 4, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 4, 2, 4, 2, 3, 2, 2, 3
Offset: 1
Keywords
Examples
For n = 12: 2^10 = 4096. The greatest prime factors of 4096, 4097, 4098, 4099 are as follows: {2, 241, 683, 4099}. A006530(4100) = 41 is already smaller than A006530(4099). Thus the length of increasing GPF sequence is 4 = a(12).
Programs
-
Mathematica
With[{nn = 12}, Table[Function[k, 1 + LengthWhile[#, # > 0 &] &@ Differences@ Array[FactorInteger[#][[-1, 1]] &, nn, k]][2^n], {n, 105}]] (* Michael De Vlieger, Jul 24 2017 *)
Comments