cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102675 Number of digits >= 5 in decimal representation of n.

This page as a plain text file.
%I A102675 #24 Feb 06 2023 06:38:08
%S A102675 0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,
%T A102675 0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,
%U A102675 2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,0,0,0,0,0
%N A102675 Number of digits >= 5 in decimal representation of n.
%C A102675 a(n) = 0 iff n is in A007091 (numbers in base 5). - _Bernard Schott_, Feb 02 2023
%D A102675 Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.
%H A102675 Hieronymus Fischer, <a href="/A102675/b102675.txt">Table of n, a(n) for n = 0..10000</a>
%F A102675 From _Hieronymus Fischer_, Jun 10 2012: (Start)
%F A102675 a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/2) - floor(n/10^j)), where m = floor(log_10(n)).
%F A102675 G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
%F A102675 G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^(5*10^j)/(1 + x^(5*10^j)).  (End)
%p A102675 p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # _Emeric Deutsch_, Feb 23 2005
%t A102675 Table[Count[IntegerDigits[n],_?(#>4&)],{n,0,120}] (* _Harvey P. Dale_, Nov 13 2013 *)
%Y A102675 Cf. A007091 (indices of 0's), A027868, A054899, A055640, A055641, A102669-A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564, A102676 (partial sums).
%Y A102675 Cf. A000120, A000788, A023416, A059015 (for base 2).
%K A102675 nonn,base,easy
%O A102675 0,56
%A A102675 _N. J. A. Sloane_, Feb 03 2005
%E A102675 More terms from _Emeric Deutsch_, Feb 23 2005