cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102693 a(n) is the number of digraphs (not allowing loops) with vertices 1,2,...,n that have a unique Eulerian tour (up to cyclic shift).

This page as a plain text file.
%I A102693 #50 Dec 04 2022 08:32:30
%S A102693 1,5,42,504,7920,154440,3603600,98017920,3047466240,106661318400,
%T A102693 4151586700800,177925144320000,8326896754176000,422590010274432000,
%U A102693 23118159385601280000,1356265350621941760000,84945040381058457600000,5657339689378493276160000
%N A102693 a(n) is the number of digraphs (not allowing loops) with vertices 1,2,...,n that have a unique Eulerian tour (up to cyclic shift).
%C A102693 It appears that a(n) can be obtained from the permanent of (2,3,4,...,n+2) as in A203470. - _Clark Kimberling_, Jan 02 2012
%D A102693 R. P. Stanley, unpublished work.
%H A102693 Alois P. Heinz, <a href="/A102693/b102693.txt">Table of n, a(n) for n = 2..367</a>
%H A102693 Paul Barry, <a href="https://arxiv.org/abs/2104.05593">On the Gap-sum and Gap-product Sequences of Integer Sequences</a>, arXiv:2104.05593 [math.CO], 2021.
%H A102693 Luz Grisales, Antoine Labelle, Rodrigo Posada, and Stoyan Dimitrov, <a href="https://arxiv.org/abs/2104.10734">Digraphs with exactly one Eulerian tour</a>, arXiv:2104.10734 [math.CO], 2021.
%F A102693 a(n) = (1/2)*A065866(n-1).
%F A102693 a(n) = C_n(n-1)!/2 = (n+2)(n+3)...(2n-1), where C_n denotes a Catalan number.
%F A102693 E.g.f.: Integral_{x} 2/(1+sqrt(1-4*x))^2 dx. - _Alois P. Heinz_, Sep 09 2015
%F A102693 a(n) = RisingFactorial(4 + n, n) assuming offset 0. - _Peter Luschny_, Mar 22 2022.
%F A102693 Sum_{n>=2} 1/a(n) = (25*exp(1/4)*sqrt(Pi)*erf(1/2) - 10)/8, where erf is the error function. - _Amiram Eldar_, Dec 04 2022
%e A102693 a(3) = 5. There are two such digraphs that are triangles and three that consist of two 2-cycles with a common vertex.
%p A102693 with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T), Prod(T,Z,Epsilon),Prod(T,T,Z))},labeled]: seq(count(ZL,size=i)/(2*i),i=2..18); # _Zerinvary Lajos_, Dec 16 2007
%p A102693 # alternative Maple program:
%p A102693 a:= proc(n) option remember; `if`(n<3, (n-1)*n/2,
%p A102693        2*(n-1)*(2*n-1)*a(n-1)/(n+1))
%p A102693     end:
%p A102693 seq(a(n), n=2..20);  # _Alois P. Heinz_, Nov 03 2017
%t A102693 a[n_] := a[n] = If[n<3, n(n-1)/2, 2(n-1)(2n-1) a[n-1]/(n+1)];
%t A102693 Table[a[n], {n, 2, 20}] (* _Jean-François Alcover_, Jun 10 2018, after _Alois P. Heinz_ *)
%Y A102693 Cf. A000108, A065866, A203470, A262034.
%K A102693 nonn
%O A102693 2,2
%A A102693 _Richard Stanley_, Feb 04 2005