cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102699 Number of strings of length n, using as symbols numbers from the set {1, 2, ..., n}, in which consecutive symbols differ by exactly 1.

This page as a plain text file.
%I A102699 #57 Oct 28 2024 12:57:33
%S A102699 1,1,2,6,16,42,104,252,592,1370,3112,6996,15536,34244,74832,162616,
%T A102699 351136,754938,1615208,3443940,7314928,15493676,32714992,68918856,
%U A102699 144815456,303703972,635554064,1327816392,2769049312,5766417480,11989472672,24897569648
%N A102699 Number of strings of length n, using as symbols numbers from the set {1, 2, ..., n}, in which consecutive symbols differ by exactly 1.
%C A102699 Equally, number of different n-digit numbers, using only the digits 1 through n, where consecutive digits differ by 1. It is assumed that there are n different digits available even when n > 9.
%C A102699 Number of endomorphisms of a path P_n. - _N. J. A. Sloane_, Sep 20 2009
%C A102699 a(n) is also the number of distinct paths of length n starting from the bottom row of an n X n chess board and ending at the top row, such that all the n squares traversed in the path are of the same color. - _Kiran Ananthpur Bacche_, Oct 25 2022
%H A102699 Alois P. Heinz, <a href="/A102699/b102699.txt">Table of n, a(n) for n = 0..3311</a> (terms n = 1..300 from T. D. Noe)
%H A102699 Sr. Arworn, <a href="http://dx.doi.org/10.1016/j.disc.2007.12.049">An algorithm for the number of endomorphisms on paths</a>, Disc. Math., 309 (2009), 94-103 (see p. 95).
%H A102699 Zhicong Lin and Jiang Zeng, <a href="http://arxiv.org/abs/1112.4026">On the number of congruence classes of paths</a>, arXiv preprint arXiv:1112.4026 [math.CO], 2011.
%H A102699 M. A. Michels and U. Knauer, <a href="http://dx.doi.org/10.1016/j.disc.2008.11.022">The congruence classes of paths and cycles</a>, Discr. Math., 309 (2009), 5352-5359. See p. 5356. [From _N. J. A. Sloane_, Sep 20 2009]
%H A102699 Joseph Myers, <a href="http://www.polyomino.org.uk/publications/2008/bmo1-2009-q1.pdf">BMO 2008-2009 Round 1 Problem 1-Generalisation</a>
%F A102699 It appears that the limit of a(n)/a(n-1) is decreasing towards 2. - _Ben Paul Thurston_, Oct 04 2006
%F A102699 a(n) = (n+1)2^(n-1) - 4(n-1)binomial(n-2,(n-2)/2) for n even, a(n) = (n+1)2^(n-1) - (2n-1)binomial(n-1,(n-1)/2) for n odd. - _Joseph Myers_, Dec 23 2008
%F A102699 a(n) = 2 * Sum_{k=1..n-1} k*A110971(n,k). - _N. J. A. Sloane_, Sep 20 2009
%F A102699 G.f.: x * (2*(1 - x) - sqrt(1 - 4*x^2)) / (1 - 2*x)^2. - _Michael Somos_, Mar 17 2014
%F A102699 0 = a(n) * 8*n^2 - a(n+1) * 4*(n^2 - 2*n - 1) - a(n+2) * 2*(n^2 + 3*n - 2) + a(n+3) * (n-1)*(n+2) for n>0. - _Michael Somos_, Mar 17 2014
%F A102699 0 = a(n) * (16*a(n+1) - 16*a(n+2) + 4*a(n+3)) + a(n+1) * (-16*a(n+1) + 20*a(n+2) - 4*a(n+3)) + a(n+2) * (-4*a(n+2) + a(n+3)) for n>0. - _Michael Somos_, Mar 17 2014
%e A102699 For example, a(4)=16: the 16 strings are 1212, 1232, 1234, 2121, 2123, 2321, 2323, 2343, 3212, 3232, 3234, 3432, 3434, 4321, 4323, 4343.
%e A102699 G.f. = x + 2*x^2 + 6*x^3 + 16*x^4 + 42*x^5 + 104*x^6 + 252*x^7 + 592*x^8 + ...
%p A102699 p:= 0; paths := proc(m, n, s, t) global p; if(((t+1) <= m) and s <= (n)) then paths(m,n,s+1,t+1); end if; if(((t-1) > 0) and s <= (n)) then paths(m,n,s+1,t-1); end if; if(s = n) then p:=p+1; end if; end proc; sumpaths:=proc(j) global p; p:=0; sp:=0; for h from 1 to j do p:=0; paths(j,j,1,h); sp:=sp+ p ; end do; sp; end proc; for l from 1 to 50 do sumpaths(l); end do; # _Ben Paul Thurston_, Oct 04 2006
%p A102699 # second Maple program:
%p A102699 a:= proc(n) option remember;
%p A102699       `if`(n<5, [1, 1, 2, 6, 16][n+1], ((2*n^2-6*n-4) *a(n-1)
%p A102699       +(56-32*n+4*n^2) *a(n-2) -8*(n-3)^2 *a(n-3))/ ((n-1)*(n-4)))
%p A102699     end:
%p A102699 seq(a(n), n=0..30);  # _Alois P. Heinz_, Nov 23 2012
%t A102699 a[n_] := a[n] = If[n <= 4, n*((n-3)*n+4)/2, ((2*n^2 - 6*n - 4)*a[n-1] + (4*n^2 - 32*n + 56)*a[n-2] - 8*(n-3)^2*a[n-3])/((n-1)*(n-4))]; Table[ a[n], {n, 1, 30}] (* _Jean-François Alcover_, Nov 10 2015, after _Alois P. Heinz_ *)
%o A102699 (PARI) x='x+O('x^55); Vec(x*(2*(1-x)-sqrt(1-4*x^2))/(1-2*x)^2) \\ _Altug Alkan_, Nov 10 2015
%o A102699 (Python)
%o A102699 from math import comb
%o A102699 def A102699(n): return ((n+1<<n-1)-(((n<<1)-1)*comb(n-1,n-1>>1) if n&1 else (n-1)*comb(n-2,n-2>>1)<<2)) if n else 1 # _Chai Wah Wu_, Oct 28 2024
%Y A102699 Cf. A110971, A152086.
%Y A102699 Main diagonal of A220062. - _Alois P. Heinz_, Dec 03 2012
%K A102699 nonn
%O A102699 0,3
%A A102699 Don Rogers (donrogers42(AT)aol.com), Feb 07 2005
%E A102699 More terms from _Ben Paul Thurston_, Oct 04 2006
%E A102699 a(20) onwards from _David Wasserman_, Apr 26 2008
%E A102699 Edited by _N. J. A. Sloane_, Jan 03 2009 and Sep 23 2010
%E A102699 a(0)=1 prepended by _Alois P. Heinz_, Apr 17 2017