This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102713 #10 Jan 08 2020 09:44:01 %S A102713 1,2,8,18,48,110,260,586,1320,2918,6412,13954,30192,64926,138964, %T A102713 296122,628664,1330134,2805916,5903090,12388736,25942542,54215268, %U A102713 113090858,235502408,489646150,1016575020,2107715426,4364561680,9027384958,18651293172,38495632794 %N A102713 Total sum of odd parts in all compositions of n. %H A102713 Andrew Howroyd, <a href="/A102713/b102713.txt">Table of n, a(n) for n = 1..1000</a> %H A102713 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-4,-4). %F A102713 a(n) = ((15*n+4)*2^(n-1)-2*(3*n+1)*(-1)^n)/27. %F A102713 From _Colin Barker_, Jan 08 2020: (Start) %F A102713 G.f.: x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2). %F A102713 a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>4. %F A102713 (End) %o A102713 (PARI) a(n)={((15*n+4)*2^(n-1) - 2*(3*n+1)*(-1)^n)/27} \\ _Andrew Howroyd_, Jan 08 2020 %o A102713 (PARI) Vec(x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2) + O(x^35)) \\ _Colin Barker_, Jan 08 2020 %Y A102713 Cf. A066967, A073371. %K A102713 easy,nonn %O A102713 1,2 %A A102713 _Vladeta Jovovic_, Feb 06 2005 %E A102713 Terms a(26) and beyond from _Andrew Howroyd_, Jan 08 2020