This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102714 #25 Mar 09 2024 14:54:36 %S A102714 2,5,14,36,95,248,650,1701,4454,11660,30527,79920,209234,547781, %T A102714 1434110,3754548,9829535,25734056,67372634,176383845,461778902, %U A102714 1208952860,3165079679,8286286176,21693778850,56795050373,148691372270,389279066436,1019145827039 %N A102714 Expansion of (x+2) / ((x+1)*(x^2-3*x+1)). %C A102714 A floretion-generated sequence relating Fibonacci numbers. %C A102714 Floretion Algebra Multiplication Program, FAMP code: (a(n)) = 2dia[I]forseq[ + .5'i + .5'ii' + .5'ij' + .5'ik' ], 2dia[J]forseq = 2dia[K]forseq = A001654, mixforseq = A001519, tesforseq = A099016, vesforseq = A000004. Identity used: dia[I] + dia[J] + dia[K] + mix + tes = ves %H A102714 Colin Barker, <a href="/A102714/b102714.txt">Table of n, a(n) for n = 0..1000</a> %H A102714 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A102714 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(0) = 2, a(1) = 5, a(2) = 14. %F A102714 a(n) + a(n+1) = A100545(n). %F A102714 a(n) + 2*a(n+1) + a(n+2) = A055849(n+2). %F A102714 a(n) + 2*A001654(n) - A099016(n+2) + 2*A001519(n) = 0. %F A102714 a(n) = (2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5. - _Colin Barker_, Oct 01 2016 %F A102714 a(n) = (-1)^n +9*A001906(n+1) -A001906(n) . - _R. J. Mathar_, Sep 11 2019 %t A102714 CoefficientList[Series[(x+2)/((x+1)(x^2-3x+1)),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-1},{2,5,14},30] (* _Harvey P. Dale_, Apr 22 2012 *) %o A102714 (PARI) a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5) \\ _Colin Barker_, Oct 01 2016 %o A102714 (PARI) Vec((x+2)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ _Colin Barker_, Oct 01 2016 %Y A102714 Cf. A001519, A099016, A001654, A100545, A055849, A000004. %K A102714 easy,nonn %O A102714 0,1 %A A102714 _Creighton Dement_, Feb 06 2005 %E A102714 Corrected by _T. D. Noe_, Nov 02 2006, Nov 07 2006