This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102716 #11 Jul 23 2019 02:02:44 %S A102716 1,1,1,1,3,1,1,4,4,1,1,7,12,7,1,1,6,18,18,6,1,1,12,24,42,24,12,1,1,8, %T A102716 32,48,48,32,8,1,1,15,56,120,144,120,56,15,1,1,13,91,224,312,312,224, %U A102716 91,13,1,1,18,78,360,576,728,576,360,78,18,1,1,12,72,288,864,1152,1152,864 %N A102716 Triangle read by rows: T(n,k) = sigma(binomial(n,k)) (0 <= k <= n), where sigma(m) is the sum of the positive divisors of m. %C A102716 Row n contains n+1 terms. Row sums yield A074801. T(2n,n) = A067819(n). %H A102716 T. D. Noe, <a href="/A102716/b102716.txt">Rows n = 0..100 of triangle, flattened</a> %F A102716 T(n, k) = sigma(binomial(n, k)) (0 <= k <= n). %e A102716 T(6,3)=42 because the sum of the divisors of binomial(6,3)=20 is 1+2+4+5+10+20=42. %e A102716 Triangle begins: %e A102716 1; %e A102716 1, 1; %e A102716 1, 3, 1; %e A102716 1, 4, 4, 1; %e A102716 1, 7, 12, 7, 1; %p A102716 with(numtheory): T:=(n,k)->sigma(binomial(n,k)): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %t A102716 Table[DivisorSigma[1,Binomial[n,k]],{n,0,20},{k,0,n}]//Flatten (* _Harvey P. Dale_, Mar 25 2016 *) %Y A102716 Cf. A074801, A067819. %K A102716 nonn,tabl %O A102716 0,5 %A A102716 _Emeric Deutsch_, Feb 06 2005