cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102751 Numbers k such that 1 + (k-1)^2 and ((k-1)/2)^2 + ((k+1)/2)^2 = (1/2)*(k^2+1) are primes.

Original entry on oeis.org

3, 5, 11, 15, 25, 85, 95, 121, 131, 171, 181, 205, 231, 261, 271, 315, 441, 445, 471, 545, 571, 595, 715, 751, 781, 861, 921, 951, 1011, 1055, 1081, 1095, 1125, 1151, 1185, 1315, 1411, 1421, 1495, 1615, 1661, 1701, 2035, 2051, 2055, 2065, 2175, 2261, 2315
Offset: 1

Views

Author

Robin Garcia, Feb 09 2005

Keywords

Comments

Conjectured to be infinite.

Examples

			11 is a term because 10^2+1=101 and 5^2+6^2=(1/2)*(11^2+1)=61 are primes.
		

References

  • G. H. Hardy and W. M. Wright, Unsolved Problems Concerning Primes, Section 2.8 and Appendix 3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, p. 19.
  • P. Ribenboim, The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 206-208, 1996.

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(1+(n-1)^2)=true and type((n^2+1)/2,integer)=true and isprime((n^2+1)/2)=true then n else fi end: seq(a(n),n=1..3000); # Emeric Deutsch, May 31 2005
  • Mathematica
    Select[Range[2,2500], PrimeQ[1+(#-1)^2]&&PrimeQ[(1/2)*(#^2+1)]&] (* James C. McMahon, Jan 10 2024 *)

Extensions

More terms from Emeric Deutsch, May 31 2005