cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5.

This page as a plain text file.
%I A102765 #10 Feb 13 2022 09:25:56
%S A102765 0,0,1,0,1,3,0,1,5,13,0,1,7,25,51,0,1,9,43,125,205,0,1,11,67,259,625,
%T A102765 819,0,1,13,97,477,1555,3125,3277,0,1,15,133,803,3355,9331,15625,
%U A102765 13107,0,1,17,175,1261,6505,23517,55987,78125,52429,0,1,19,223,1875,11605
%N A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5.
%C A102765 Consider a 5x5 matrix M =
%C A102765 [n, 1, 1, 1, 1]
%C A102765 [1, n, 1, 1, 1]
%C A102765 [1, 1, n, 1, 1]
%C A102765 [1, 1, 1, n, 1]
%C A102765 [1, 1, 1, 1, n].
%C A102765 The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (n-1)^k.)
%C A102765 For row r we have polynomial ((r+4)^n-(r-1)^n)/5. Corresponding g.f.s: x/((1-(r-1)x)(1-(r+4)x))
%C A102765 If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+4.
%C A102765 Triangle T(n, k) = (4^(n-k-1)-(-1)^(n-k-1))/5*(binomial(k+(n-k-1),n-k-1)) gives coefficients for polynomials for the columns of the array. First four polynomial are:
%C A102765   1
%C A102765   3 + 2*k
%C A102765   13 + 9*k + 3*k^2
%C A102765   51 + 52*k + 18*k^2 + 4*k^3
%C A102765   ...
%e A102765 Array begins:
%e A102765   0, 1,  3, 13,  51,  205, ...
%e A102765   0, 1,  5, 25, 125,  625, ...
%e A102765   0, 1,  7, 43, 259, 1555, ...
%e A102765   0, 1,  9, 67, 477, 3355, ...
%e A102765   0, 1, 11, 97, 803, 6505, ...
%e A102765   ...
%o A102765 (PARI) MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M
%o A102765 for(k=0,10, for(i=0,10,print1((MM(5,k)^i)[1,2],","));print())
%o A102765 (PARI) p(n,k)=((n+4)^k-(n-1)^k)/5
%o A102765 for(k=0,10, for(i=0,10,print1(p(k,i),","));print())
%o A102765 (PARI) for(k=0,10, for(i=0,10,print1(polcoeff(x/((1-(k-1)*x)*(1-(k+4)*x)),i),","));print())
%Y A102765 Cf. A015521 (for n=0), A000351 (for n=1), A003464 (for n=2), A016130 (for n=3), A016140 (for n=4), A016153 (for n=5), A016164 (for n=6), A016174 (for n=7), A016184 (for n=8), A015441 (for n=-1), A091005 (for n=-2).
%K A102765 nonn,tabl
%O A102765 0,6
%A A102765 Lambert Klasen (lambert.klasen(AT)gmx.net) and _Gary W. Adamson_, Feb 10 2005