This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102766 #22 Dec 29 2024 09:04:07 %S A102766 1,81,100,2025,3025,9801,10000,88209,494209,998001,1000000,4941729, %T A102766 7441984,23804641,24502500,25502500,28005264,52881984,60481729, %U A102766 99980001,100000000,300814336,493817284,1518037444,6049417284,6832014336,9048004641,9999800001,10000000000 %N A102766 Numbers n that can be chopped into two parts, which when added and squared result in n. %H A102766 Michael S. Branicky, <a href="/A102766/b102766.txt">Table of n, a(n) for n = 1..131</a> %H A102766 Henry Ernest Dudeney, <a href="https://archive.org/stream/AmusementsInMathematicspdf/AmusementsInMathematics#page/n29/mode/2up">Amusements in Mathematics</a>, 1917. See problem 113, "The torn number". %F A102766 a(n) = A248353(n)^2. %e A102766 a(7) = 88209 is a term as (88+209)^2 = 297^2 = 88209. %o A102766 (Python) %o A102766 from math import isqrt %o A102766 from itertools import count, islice %o A102766 def ok(n): %o A102766 if n == 1: return True %o A102766 r = isqrt(n) %o A102766 if r**2 != n: return False %o A102766 s = str(n) %o A102766 return any(int(s[:i])+int(s[i:])== r for i in range(1, len(s))) %o A102766 def agen(): yield from (k**2 for k in count(1) if ok(k**2)) %o A102766 print(list(islice(agen(), 29))) # _Michael S. Branicky_, Dec 29 2024 %Y A102766 Supersequence of A238237. %K A102766 nonn,base %O A102766 1,2 %A A102766 _Bodo Zinser_, Feb 10 2005 %E A102766 a(1)=1 prepended by _Max Alekseyev_, Aug 04 2017 %E A102766 a(27) and beyond from _Michael S. Branicky_, Dec 29 2024