cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102771 Decimal expansion of area of a regular pentagon with unit edge length.

This page as a plain text file.
%I A102771 #26 Feb 16 2025 08:32:56
%S A102771 1,7,2,0,4,7,7,4,0,0,5,8,8,9,6,6,9,2,2,7,5,9,0,1,1,9,7,7,3,8,8,6,0,9,
%T A102771 5,9,9,4,0,7,3,7,4,1,7,0,0,1,0,1,9,8,3,2,9,2,0,7,0,9,4,7,0,7,0,2,3,8,
%U A102771 6,8,9,9,2,2,0,8,9,6,6,2,3,1,3,3,2,4,4,1,2,4,1,3,8,7,5,8,7,7,4
%N A102771 Decimal expansion of area of a regular pentagon with unit edge length.
%H A102771 G. C. Greubel, <a href="/A102771/b102771.txt">Table of n, a(n) for n = 1..10000</a>
%H A102771 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pentagon.html">Pentagon</a>
%H A102771 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>
%F A102771 Equals sqrt(25 + 10*sqrt(5)) / 4.
%F A102771 Equals (3*phi+1)*sqrt(3-phi) with the golden section phi = (1 + sqrt(5))/2. - _Wolfdieter Lang_, Jan 25 2013
%F A102771 Equals 5/(4*tan(Pi/5)). - _Michel Marcus_, Mar 25 2015
%F A102771 Equals (5/4)*sqrt(phi^3/sqrt(5)). - _G. C. Greubel_, Jul 03 2017
%e A102771 1.720477400588966922759011977...
%t A102771 RealDigits[(5/4)*Sqrt[GoldenRatio^3/Sqrt[5]], 10, 50][[1]] (* _G. C. Greubel_, Jul 03 2017 *)
%o A102771 (PARI) 5/(4*tan(Pi/5)) \\ _Michel Marcus_, Mar 25 2015
%Y A102771 Cf. Areas of other regular polygons: A120011, A104956, A178817, A090488, A256853, A178816, A256854, A178809.
%K A102771 nonn,cons
%O A102771 1,2
%A A102771 Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005
%E A102771 Corrected the title. - _Stanislav Sykora_, Apr 12 2015