cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102781 Number of positive even numbers less than the n-th prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
Offset: 1

Views

Author

Cino Hilliard, Feb 25 2005

Keywords

Comments

Same as A005097 ((odd primes - 1)/2) with a leading zero. - Lambert Klasen, Nov 06 2005

Crossrefs

Cf. A005097. - R. J. Mathar, May 18 2009
Equals (A000040-1)/2, integer part (0) for the first term. - M. F. Hasler, Dec 13 2019

Programs

  • Mathematica
    Table[Prime[n] - Floor[Prime[n]/2] - 1, {n, 65}] (* Robert G. Wilson v *)
  • PARI
    c(n,r) = { local(p); forprime(p=r,n, print1(floor(primorial(p)/ primorial(p-r)/primorial(r)+.0)",") ) } primorial(n) = \ The product primes <= n using the pari primelimit. { local(p1,x); if(n==0||n==1, return(2)); p1=1; forprime(x=2,n,p1*=x); return(p1) }
    
  • PARI
    apply( A102781(n)=(prime(n)-1)\2, [1..99]) \\ M. F. Hasler, Dec 13 2019
    
  • Python
    from sympy import prime
    def A102781(n): return prime(n)-1>>1 # Chai Wah Wu, Oct 13 2024

Formula

Integer part of p#/((p-2)#*2#), where p=prime(n) and i# is the primorial function A034386(i). - Cino Hilliard, Feb 25 2005
n# = product of primes <= n. 0# = 1# = 2. [This is not a standard convention!] n#/(n-r)#/r# is analogous to the number of binomial coefficients A007318 = C(n, r) = n!/(n-r)!/r! where factorial ! is replaced by primorial #.
a(n) = prime_n - floor((prime_n)/2) - 1. - Giovanni Teofilatto, Nov 05 2005
a(n) = [A034386(prime(n))/(2*A034386(prime(n)-2))], n>2. - R. J. Mathar, May 18 2009
a(n) = [(prime(n)-1)/2] where the integer part [.] needs be taken only for n=1. - M. F. Hasler, Dec 13 2019

Extensions

Simpler definition from Giovanni Teofilatto, Nov 05 2005
Edited by N. J. A. Sloane Jul 05 2009 at the suggestion of R. J. Mathar