cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102806 Numbers that are not the sum of distinct tetrahedral numbers.

This page as a plain text file.
%I A102806 #17 Sep 15 2022 10:38:37
%S A102806 2,3,6,7,8,9,12,13,16,17,18,19,22,23,26,27,28,29,32,33,37,38,41,42,43,
%T A102806 44,47,48,51,52,53,54,58,62,63,64,68,72,73,74,75,78,79,82,83,93,97,
%U A102806 100,103,107,110,113,117,127,128,132,136,137,138,142,146,147,148
%N A102806 Numbers that are not the sum of distinct tetrahedral numbers.
%C A102806 The b-file contains all the members of the sequence.  See link. - _Robert Israel_, Dec 29 2019
%H A102806 Robert Israel, <a href="/A102806/b102806.txt">Table of n, a(n) for n = 1..112</a>
%H A102806 Robert Israel, <a href="/A102806/a102806.pdf">Proof that the b-file is full</a>
%p A102806 N:= 100000: # to test all n <= N
%p A102806 ft:= t -> t*(t+1)*(t+2)/6:
%p A102806 tets:= map(ft, [$1..floor((6*N)^(1/3))]):
%p A102806 f:= proc(n,tmax) option remember;
%p A102806    local res, s;
%p A102806    if member(n, tets) and n < tmax then return false fi;
%p A102806    for s in tets while s < min(n, tmax) do
%p A102806      if not procname(n-s,s) then return false fi
%p A102806    od;
%p A102806      true
%p A102806 end proc:
%p A102806 select(f, [$1..N],infinity); # _Robert Israel_, Dec 29 2019
%t A102806 M = 1000; (* to test all n <= M *)
%t A102806 ft[t_] := t*(t+1)*(t+2)/6;
%t A102806 tets = Map[ft, Range[Floor[(6*M)^(1/3)]]];
%t A102806 f[n_, tMax_] := f[n, tMax] = Module[{res, s}, If[MemberQ[tets, n] && n < tMax, Return[False]]; For[i = 1, s = tets[[i]]; i <= Length[tets] && s < Min[n, tMax], i++, If[!f[n-s, s], Return[False]]]; True];
%t A102806 Select[Range[M], f[#, Infinity]&] (* _Jean-François Alcover_, Sep 15 2022, after _Robert Israel_ *)
%Y A102806 Cf. A000292, A104246, A102795, etc.
%K A102806 nonn,fini,full
%O A102806 1,1
%A A102806 _Jud McCranie_, Feb 26 2005