This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102820 #24 Jun 01 2023 17:57:22 %S A102820 1,1,2,2,1,2,1,2,2,2,3,1,1,1,3,3,0,2,2,0,3,1,2,4,2,0,1,0,1,6,1,3,1,3, %T A102820 0,3,1,1,1,3,1,3,1,1,1,4,4,1,1,2,1,1,3,2,2,0,1,1,1,1,3,6,2,0,1,6,1,3, %U A102820 0,1,1,3,2,2,1,2,1,1,2,4,1,3,1,1,2,1,2,1,0,1,4,2,1,3,0,2,5,0,5,3,3,2,1,0,2 %N A102820 Number of primes between 2*prime(n) and 2*prime(n+1), where prime(n) is the n-th prime. %C A102820 Number of primes between successive even semiprimes. [_Juri-Stepan Gerasimov_, May 01 2010] %C A102820 From _Peter Munn_, Jun 01 2023: (Start) %C A102820 First differences of A020900. %C A102820 A080192 lists prime(n) corresponding to the zero terms. %C A102820 A104380(k) is prime(n) corresponding to the first occurrence of k as a term. %C A102820 If a(n) is nonzero, A059786(n) is the smallest and A059788(n+1) the largest of the a(n) enumerated primes. In the tree of primes described in A290183, these primes label the child nodes of prime(n). %C A102820 Conjecture: the asymptotic proportions of 0's, 1's, ... , k's, ... are 1/3, 2/9, ... , 2^k/3^(k+1), ... . %C A102820 (End) %H A102820 Reinhard Zumkeller, <a href="/A102820/b102820.txt">Table of n, a(n) for n = 1..10000</a> %H A102820 V. Shevelev, <a href="https://arxiv.org/abs/0908.2319">On critical small intervals containing primes</a>, arXiv:0908.2319 [math.NT], 2009. %F A102820 a(n) = A020900(n+1) - A020900(n). - _Peter Munn_, Jun 01 2023 %e A102820 a(15)=3 because there are 3 primes between the doubles of the 15th and 16th primes, that is between 2*47 and 2*53. %t A102820 Table[PrimePi[2 Prime[n+1]]-PrimePi[2 Prime[n]], {n, 150}] (* _Zak Seidov_ *) %t A102820 Differences[PrimePi[2 Prime[Range[110]]]] (* _Harvey P. Dale_, Oct 29 2022 *) %o A102820 (Haskell) %o A102820 a102820 n = a102820_list !! (n-1) %o A102820 a102820_list = map (sum . (map a010051)) $ %o A102820 zipWith enumFromTo a100484_list (tail a100484_list) %o A102820 -- _Reinhard Zumkeller_, Apr 29 2012 %o A102820 (PARI) a(n) = primepi(2*prime(n+1)) - primepi(2*prime(n)); \\ _Michel Marcus_, Sep 22 2017 %Y A102820 Sequences with related analysis: A020900, A059786, A059788, A080192, A104380, A290183. %Y A102820 Cf. A104272, A080359. [_Vladimir Shevelev_, Aug 24 2009] %Y A102820 Cf. A100484, A010051. %Y A102820 Sequences with similar definitions: A104289, A217564. %K A102820 easy,nonn %O A102820 1,3 %A A102820 Ali A. Tanara (tanara(AT)khayam.ut.ac.ir), Feb 27 2005 %E A102820 More terms from _Zak Seidov_, Feb 28 2005