cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102836 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 2, 4, ...

This page as a plain text file.
%I A102836 #12 Jun 29 2024 07:17:10
%S A102836 18,50,75,98,147,242,245,338,363,507,578,605,722,845,847,867,1058,
%T A102836 1083,1183,1445,1587,1682,1805,1859,1922,2023,2523,2527,2645,2738,
%U A102836 2883,3179,3362,3698,3703,3757,3971,4107,4205,4418,4693,4805,5043,5547,5618,5819
%N A102836 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 2, 4, ...
%C A102836 The first term not in A095990 is a(70) = 11250.
%H A102836 Amiram Eldar, <a href="/A102836/b102836.txt">Table of n, a(n) for n = 1..10000</a>
%e A102836 Canonical factorization of a(70) = 11250 = 2^1 * 3^2 * 5*4 or 2,3,5 raised to powers 1,2,4 which is a geometric progression.
%t A102836 q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Length[e] > 1 && e == 2^Range[0, Length[e]-1]]; Select[Range[6000], q] (* _Amiram Eldar_, Jun 29 2024 *)
%o A102836 (PARI) /* Numbers whose factors are primes to perfect powers in a geometric progression. */ geoprog(n,m) = { local(a,x,j,nf,fl=0); for(x=1,n, a=factor(x); nf=omega(x); for(j=1,nf, if(a[j,2]==2^(j-1),fl=1,fl=0;break); ); if(fl&nf>1,print1(x",")) ) }
%o A102836 (PARI) is(n) = if(n == 1 || isprime(n), 0, my(e = factor(n)[, 2]); for(i = 1, #e, if(e[i] != 2^(i-1), return(0))); 1); \\ _Amiram Eldar_, Jun 29 2024
%Y A102836 Cf. A095990, A102838.
%K A102836 easy,nonn
%O A102836 1,1
%A A102836 _Cino Hilliard_, Feb 27 2005