cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102838 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 3, 9, ...

This page as a plain text file.
%I A102838 #10 Jun 29 2024 07:17:31
%S A102838 54,250,375,686,1029,1715,2662,3993,4394,6591,6655,9317,9826,10985,
%T A102838 13718,14739,15379,20577,24167,24334,24565,34295,34391,36501,48013,
%U A102838 48778,54043,59582,60835,63869,73167,75449,85169,89167,89373
%N A102838 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 3, 9, ...
%H A102838 Amiram Eldar, <a href="/A102838/b102838.txt">Table of n, a(n) for n = 1..3000</a>
%e A102838 The first term having more than 2 prime powers is 105468750 = 2^1 * 3^3 * 5^9, not shown.
%t A102838 q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Length[e] > 1 && e == 3^Range[0, Length[e]-1]]; Select[Range[10^5], q] (* _Amiram Eldar_, Jun 29 2024 *)
%o A102838 (PARI) geoprog(n,m) = { local(a,x,j,nf,fl=0); for(x=1,n, a=factor(x); nf=omega(x); for(j=1,nf, if(a[j,2]==3^(j-1),fl=1,fl=0;break); ); if(fl&nf>1,print1(x",")) ) }
%o A102838 (PARI) is(n) = if(n == 1 || isprime(n), 0, my(e = factor(n)[, 2]); for(i = 1, #e, if(e[i] != 3^(i-1), return(0))); 1); \\ _Amiram Eldar_, Jun 29 2024
%Y A102838 Cf. A102836.
%K A102838 easy,nonn
%O A102838 1,1
%A A102838 _Cino Hilliard_, Feb 27 2005