cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102882 Expansion of (1+2x)/sqrt((1-3x^2)(1+4x+5x^2)).

This page as a plain text file.
%I A102882 #8 Feb 03 2014 14:29:25
%S A102882 1,0,1,2,-3,16,-27,66,-79,96,129,-686,2429,-5520,11125,-15438,10785,
%T A102882 36032,-182591,556194,-1279171,2393296,-3187131,1157666,10934481,
%U A102882 -48082656,136730689,-304493326,539172285,-647406800,-53647147,3352290450,-12929496767,34720868736,-74092036479
%N A102882 Expansion of (1+2x)/sqrt((1-3x^2)(1+4x+5x^2)).
%C A102882 Binomial transform is A102881.
%F A102882 G.f.: (1+2x)/sqrt(1+4x+2x^2-12x^3-15x^4).
%F A102882 Conjecture: n*(n+1)*a(n) +2*(2*n+3)*(n-1)*a(n-1) +2*(n^2-7)*a(n-2) +6*(5+n-2*n^2)*a(n-3) -15*(n+2)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 09 2012
%F A102882 Lim sup n->infinity |a(n)|^(1/n) = sqrt(5). - _Vaclav Kotesovec_, Feb 03 2014
%t A102882 CoefficientList[Series[(1+2*x)/Sqrt[1+4*x+2*x^2-12*x^3-15*x^4], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 03 2014 *)
%K A102882 easy,sign
%O A102882 0,4
%A A102882 _Paul Barry_, Jan 15 2005