This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102902 #45 Jul 27 2025 11:15:51 %S A102902 1,9,65,441,2929,19305,126881,833049,5467345,35877321,235418369, %T A102902 1544728185,10135859761,66507086889,436390025825,2863396842201, %U A102902 18788331166609,123280631024265,808912380552641,5307721328585529 %N A102902 a(n) = 9*a(n-1) - 16*a(n-2), with a(0) = 1, a(1) = 9. %H A102902 Indranil Ghosh, <a href="/A102902/b102902.txt">Table of n, a(n) for n = 0..1221</a> %H A102902 R. Flórez, R. A. Higuita, and A. Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mukherjee/mukh2.html">Alternating Sums in the Hosoya Polynomial Triangle</a>, Article 14.9.5, Journal of Integer Sequences, Vol. 17 (2014). %H A102902 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-16). %F A102902 G.f.: 1/(1-9*x+16*x^2). %F A102902 a(n) = Sum_{k=0..n} binomial(2*n-k+1, k)*4^k. %F A102902 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-16)^k*9^(n-2*k). %F A102902 a(n) = 4^n * ChebyshevU(n, 9/8). - _G. C. Greubel_, Dec 09 2022 %F A102902 From _Peter Bala_, Jul 23 2025: (Start) %F A102902 a(n) := ((9 + sqrt(17))^(n+1) - (9 - sqrt(17))^(n+1))/(2^(n+1)*sqrt(17)). %F A102902 The following products telescope: %F A102902 Product_{k >= 1} 1 + 4^k/a(k) = (1 + sqrt(17))/2. %F A102902 Product_{k >= 1} 1 - 4^k/a(k) = (1 + sqrt(17))/18. %F A102902 Product_{k >= 1} 1 + (-4)^k/a(k) = (17 + sqrt(17))/34. %F A102902 Product_{k >= 1} 1 - (-4)^k/a(k) = (17 + sqrt(17))/18. (End) %t A102902 LinearRecurrence[{9,-16},{1,9},20] (* _Harvey P. Dale_, Jul 28 2016 *) %o A102902 (SageMath) [lucas_number1(n,9,16) for n in range(1, 21)] # _Zerinvary Lajos_, Apr 23 2009 %o A102902 (Magma) [4^n*Evaluate(ChebyshevSecond(n+1), 9/8): n in [0..30]]; // _G. C. Greubel_, Dec 09 2022 %Y A102902 Cf. A002450, A004187, A016153, A099459. %K A102902 easy,nonn %O A102902 0,2 %A A102902 _Paul Barry_, Jan 17 2005