cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102916 Triangle, read by rows, where the antidiagonals are formed by interleaving the rows of triangle A102098 with the rows of its matrix square (A102920).

This page as a plain text file.
%I A102916 #4 Mar 30 2012 18:36:44
%S A102916 1,1,2,1,4,3,3,8,9,4,7,40,27,16,5,36,152,189,64,25,6,139,1128,999,576,
%T A102916 125,36,7,1036,6200,9720,3904,1375,216,49,8,5711,61120,69687,47040,
%U A102916 11375,2808,343,64,9,56355,442552,857466,416704,163500,27432,5145,512
%N A102916 Triangle, read by rows, where the antidiagonals are formed by interleaving the rows of triangle A102098 with the rows of its matrix square (A102920).
%C A102916 Column 0 is A102917, the interleaving of A082162 with A102921. Under matrix cube, triangle A102098 shifts each column up 1 row.
%F A102916 G.f. for column k: T(k, k) = k+1 = Sum_{n>=0} T(n+k, k)*x^n*Product_{j=k..[n/2+k]} (1-(j+1)*x).
%e A102916 Rows begin:
%e A102916 [1],
%e A102916 [1,2],
%e A102916 [1,4,3],
%e A102916 [3,8,9,4],
%e A102916 [7,40,27,16,5],
%e A102916 [36,152,189,64,25,6],
%e A102916 [139,1128,999,576,125,36,7],
%e A102916 [1036,6200,9720,3904,1375,216,49,8],
%e A102916 [5711,61120,69687,47040,11375,2808,343,64,9],...
%e A102916 The antidiagonals are formed by interleaving the
%e A102916 rows of triangle A102098:
%e A102916 [1],
%e A102916 [1,2],
%e A102916 [7,8,3],
%e A102916 [139,152,27,4],...
%e A102916 with the rows of the matrix square of A102098,
%e A102916 which is triangle A102920:
%e A102916 [1],
%e A102916 [3,4],
%e A102916 [36,40,9],
%e A102916 [1036,1128,189,16],...
%e A102916 G.f. for Column 0 (A102917): 1 = 1*(1-x) + 1*x*(1-x)
%e A102916 + 1*x^2*(1-x)(1-2x) + 3*x^3*(1-x)(1-2x)
%e A102916 + 7*x^4*(1-x)(1-2x)(1-3x) + 36*x^5*(1-x)(1-2x)(1-3x) +...
%e A102916 + A082162(n)*x^(2n)*(1-x)(1-2x)*..*(1-(n+1)x)
%e A102916 + A102921(n)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+1)x) + ...
%e A102916 G.f. for Column 1 (A102918): 2 = 2*(1-2x) + 4*x*(1-2x)
%e A102916 + 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x)
%e A102916 + 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x) +...
%e A102916 + T(2n+1,1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x)
%e A102916 + T(2n+2,1)*x^(2n+1)*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
%o A102916 (PARI) {T(n,k)=if(n<k,0,if(n==k,k+1, polcoeff(k+1-sum(i=k,n-1,T(i,k)*x^i*prod(j=1,(i-k)\2+1,1-(j+k)*x+x*O(x^n))),n)))}
%Y A102916 Cf. A102086, A102098, A102920, A102917, A102918.
%K A102916 nonn,tabl
%O A102916 0,3
%A A102916 _Paul D. Hanna_, Jan 21 2005