This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102918 #3 Mar 30 2012 18:36:44 %S A102918 0,2,4,8,40,152,1128,6200,61120,442552,5466320,49399320,735847800, %T A102918 8003532512,139910204080,1784040237288,35858685086352,525504809786112, %U A102918 11953187179149408,198213959637435608,5037776918810353960 %N A102918 Column 1 of triangle A102916. %C A102918 Also equals the interleaving of A102099 with A102922, which equal column 1 of triangle A102098 and its matrix square (A102920), respectively. %F A102918 G.f.: 2 = Sum_{n>=0}(a(2*n+1)+a(2*n+2)*x)*x^(2*n)*Product_{k=2..n+2}(1-k*x) where a(2*n+1)=A102099(n+1) and a(2*n+2)=A102922(n+1) with a(0)=0. %e A102918 2 = 2*(1-2x) + 4*x*(1-2x) + 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x) %e A102918 + 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x) %e A102918 + 6200*x^6*(1-2x)(1-3x)(1-4x)(1-5x) + 61120*x^7*(1-2x)(1-3x)(1-4x)(1-5x) +... %e A102918 + A102099(n+1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x) %e A102918 + A102922(n+1)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+2)x) + ... %o A102918 (PARI) {a(n)=if(n==0,2,polcoeff(2-sum(k=0,n-1,a(k)*x^k*prod(j=2,k\2+2,1-j*x+x*O(x^n))),n))} %Y A102918 Cf. A102916, A102099, A102922, A102098, A102920. %K A102918 nonn %O A102918 0,2 %A A102918 _Paul D. Hanna_, Jan 21 2005