This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102945 #25 Sep 08 2022 08:45:16 %S A102945 1,3,12,267,843,6300,37992,54117,121242,121621 %N A102945 Numbers k such that 10^k + 8*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k. %C A102945 Also numbers k such that (17*10^k + 1)/9 is prime. %C A102945 No more terms below 133000. - _Serge Batalov_, May 15 2010 %C A102945 a(11) > 2*10^5. - _Robert Price_, Nov 16 2014 %H A102945 Makoto Kamada, <a href="https://stdkmd.net/nrr/1/18889.htm#prime">Prime numbers of the form 188...889</a>. %H A102945 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>. %F A102945 a(n) = A102031(n) + 1. %p A102945 A102945:=n->`if`(isprime((17*10^n+1)/9), n, NULL): seq(A102945(n), n=1..10^3); # _Wesley Ivan Hurt_, Nov 16 2014 %t A102945 Do[ If[ PrimeQ[(17*10^n + 1)/9], Print[n]], {n, 0, 10000}] %t A102945 Select[Range[1000], PrimeQ[(17 10^# + 1) / 9] &] (* _Vincenzo Librandi_, Nov 17 2014 *) %o A102945 (Magma) [n: n in [0..300] | IsPrime((17*10^n+1) div 9)]; // _Vincenzo Librandi_, Nov 17 2014 %Y A102945 Cf. A002275, A102031. %K A102945 more,nonn %O A102945 1,2 %A A102945 _Robert G. Wilson v_, Dec 16 2004 %E A102945 More PRP terms a(7)-a(10). Sieved with srsieve and tested with Prime95 by _Serge Batalov_, May 15 2010