cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102945 Numbers k such that 10^k + 8*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

This page as a plain text file.
%I A102945 #25 Sep 08 2022 08:45:16
%S A102945 1,3,12,267,843,6300,37992,54117,121242,121621
%N A102945 Numbers k such that 10^k + 8*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
%C A102945 Also numbers k such that (17*10^k + 1)/9 is prime.
%C A102945 No more terms below 133000. - _Serge Batalov_, May 15 2010
%C A102945 a(11) > 2*10^5. - _Robert Price_, Nov 16 2014
%H A102945 Makoto Kamada, <a href="https://stdkmd.net/nrr/1/18889.htm#prime">Prime numbers of the form 188...889</a>.
%H A102945 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F A102945 a(n) = A102031(n) + 1.
%p A102945 A102945:=n->`if`(isprime((17*10^n+1)/9), n, NULL): seq(A102945(n), n=1..10^3); # _Wesley Ivan Hurt_, Nov 16 2014
%t A102945 Do[ If[ PrimeQ[(17*10^n + 1)/9], Print[n]], {n, 0, 10000}]
%t A102945 Select[Range[1000], PrimeQ[(17 10^# + 1) / 9] &] (* _Vincenzo Librandi_, Nov 17 2014 *)
%o A102945 (Magma) [n: n in [0..300] | IsPrime((17*10^n+1) div 9)]; // _Vincenzo Librandi_, Nov 17 2014
%Y A102945 Cf. A002275, A102031.
%K A102945 more,nonn
%O A102945 1,2
%A A102945 _Robert G. Wilson v_, Dec 16 2004
%E A102945 More PRP terms a(7)-a(10). Sieved with srsieve and tested with Prime95 by _Serge Batalov_, May 15 2010