This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103124 #20 Mar 14 2025 09:51:15 %S A103124 399996663,666609999,669969663,690696969,699966663,2789929969, %T A103124 3066999963,3366339999,3366999933,3399696663,3399996633,3666699663, %U A103124 3669933993,3933969693,6066690999,6069996663,6099996633,6393996933,6399636963,6666009999,6669669633,6966939633 %N A103124 1/5-Smith numbers. %H A103124 Shyam Sunder Gupta, <a href="http://www.shyamsundergupta.com/smith.htm">Smith Numbers</a>. %H A103124 Shyam Sunder Gupta, <a href="https://doi.org/10.1007/978-981-97-2465-9_4">Smith Numbers</a>, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157. %H A103124 Wayne L. McDaniel, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/25-1/mcdaniel.pdf">The Existence of infinitely Many k-Smith numbers</a>, Fibonacci Quarterly, 25(1987), pp. 76-80. %e A103124 399996663 is a 5^(-1) Smith number because the digit sum of 399996663, i.e., S(399996663) = 3 + 9 + 9 + 9 + 9 + 6 + 6 + 6 + 3 = 60, which is equal to 5 times the sum of the digits of its prime factors, i.e., 5*Sp(399996663) = 5*Sp(3*11*101*120011) = 5*(3 + 1 + 1 + 1 + 0 + 1 + 1 + 2 + 0 + 0 + 1 + 1) = 60. %Y A103124 Cf. A006753. %K A103124 base,nonn %O A103124 1,1 %A A103124 _Shyam Sunder Gupta_, Mar 16 2005 %E A103124 a(6)-a(22) from _Donovan Johnson_, Sep 20 2011