A103126 5-Smith numbers.
2030, 10203, 12110, 20210, 20310, 21004, 21010, 24000, 24010, 31010, 41001, 50010, 70000, 100004, 100012, 100210, 100310, 100320, 101020, 101041, 102022, 103200, 104010, 104101, 104110, 105020, 106001, 110020, 110202, 110212, 110400, 111013
Offset: 1
Examples
2030 is a 5-Smith number because the sum of the digits of its prime factors, i.e., Sp(2030) = Sp(2*5*7*29) = 2 + 5 + 7 + 2 + 9 = 25, which is equal to 5 times the digit sum of 2030, i.e., 5*S(2030) = 5*(2 + 0 + 3 + 0) = 25.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers.
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Wayne L. McDaniel, The Existence of infinitely Many k-Smith numbers, Fibonacci Quarterly, Vol. 25, No. 1 (1987), pp. 76-80.
Crossrefs
Cf. A006753.
Programs
-
Mathematica
digSum[n_] := Plus @@ IntegerDigits[n]; fiveSmithQ[n_] := CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == 5 *digSum[n]; Select[Range[10^5], fiveSmithQ] (* Amiram Eldar, Aug 23 2020 *)