This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103136 #19 Nov 16 2023 15:56:01 %S A103136 1,-1,1,2,-3,1,-6,10,-5,1,22,-38,22,-7,1,-90,158,-98,38,-9,1,394,-698, %T A103136 450,-194,58,-11,1,-1806,3218,-2126,978,-334,82,-13,1,8558,-15310, %U A103136 10286,-4942,1838,-526,110,-15,1,-41586,74614,-50746,25150,-9922,3142,-778,142,-17,1,206098,-370610,254410,-129050 %N A103136 Inverse of the Delannoy triangle. %C A103136 The Delannoy triangle is A008288 viewed as a number triangle. It is then given by the Riordan array (1/(1-x), x(1+x)/(1-x)). The absolute value of A103136 is the Riordan array (1+xS(x),xS(x)) which is the inverse of the signed Delannoy triangle (1/(1+x), x(1-x)/(1+x)). %C A103136 Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -1, -1, -2, -1, -2, -1, -2, -1, -2, ... ] DELTA [ 1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938; the unsigned version is given by [ 1, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA [ 1, 0, 0, 0, 0, 0, 0, 0, ... ]. - _Philippe Deléham_, Jul 08 2005 %C A103136 The unsigned number |T(n,k)| counts Schroeder n-paths whose ascent starting at the initial vertex has length k. A Schroeder n-path is a lattice path starting from (0,0), ending at (2n,0), consisting only of steps U=(1,1) (upsteps), D=(1,-1) (downsteps) and F=(2,0) (flatsteps) and never going below the x-axis. For example, |T(2,0)| = 2 counts FF, FUD; |T(2,1)| = 3 counts UFD, UDF, UDUD; |T(2,2)| = 1 counts UUDD. - _David Callan_, Jul 14 2006 %F A103136 Riordan array (1-f(x), f(x)) with f(x) = xS(-x), S(x) the g.f. of the large Schroeder numbers A006318. Equivalent to Riordan array (g(x), 1-g(x)) where g(x) = (3+x-sqrt(1+6x+x^2))/2. %F A103136 G.f.: 1/(1 + (x - xy)/(1 + x/(1 + 2x/(1 + x/(1 + 2x/(1+... (continued fraction). - _Paul Barry_, Apr 29 2009 %e A103136 From _Paul Barry_, Apr 29 2009: (Start) %e A103136 Triangle begins %e A103136 1; %e A103136 -1, 1; %e A103136 2, -3, 1; %e A103136 -6, 10, -5, 1; %e A103136 22, -38, 22, -7, 1; %e A103136 -90, 158, -98, 38, -9, 1; %e A103136 394, -698, 450, -194, 58, -11, 1; %e A103136 Production matrix is %e A103136 -1, 1, %e A103136 1, -2, 1, %e A103136 -1, 2, -2, 1, %e A103136 1, -2, 2, -2, 1, %e A103136 -1, 2, -2, 2, -2, 1 %e A103136 The unsigned triangle has production matrix %e A103136 1, 1, %e A103136 1, 2, 1, %e A103136 1, 2, 2, 1, %e A103136 1, 2, 2, 2, 1, %e A103136 1, 2, 2, 2, 2, 1 (End) %o A103136 (SageMath) %o A103136 def A103136(dim): # Returns a triangle with 'dim' rows %o A103136 M = matrix([[simplify(hypergeometric([-n, n-k], [1], 2)) %o A103136 for n in range(k+1)] + [0]*(dim-k-1) for k in range(dim)]) %o A103136 return [row[:n+1] for n, row in enumerate(M.inverse())] %o A103136 A103136(9) # _Peter Luschny_, Nov 16 2023 %K A103136 easy,sign,tabl %O A103136 0,4 %A A103136 _Paul Barry_, Jan 24 2005