cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103140 Number of 3-noncrossing restricted RNA structures with n vertices.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 40, 119, 364, 1145, 3688, 12139, 40734, 139071, 482214, 1695469, 6036768, 21740969, 79117822, 290674470, 1077306351, 4025068621, 15151115808, 57427176992, 219068962330, 840708048210, 3244438898552, 12586627632549, 49069788882951
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 07 2008

Keywords

Comments

a(n) is the number of 3-noncrossing partial matchings over n vertices and without arcs of length 1 and 2. - Andrey Zabolotskiy, Nov 11 2023

Crossrefs

Programs

  • Mathematica
    sf3[n_] := sf3[n] = Sum[Binomial[n, 2 k] (CatalanNumber[k + 2] CatalanNumber[k] - CatalanNumber[k + 1]^2), {k, 0, n/2}]; (* this is A049401 *)
    la[0, 0, 0] = 1;
    la[?Negative, , ] = la[, ?Negative, ] = la[, , _?Negative] = 0;
    la[n_, b1_, b2_] := la[n, b1, b2] = la[n - 2, b1 - 1, b2] + la[n - 1, b1, b2] + la[n - 4, b1, b2 - 2] + la[n - 3, b1, b2 - 1];
    a[n_] := Sum[(-1)^(b1 + b2) la[n, b1, b2] sf3[n - 2 (b1 + b2)], {b1, 0, n/2}, {b2, 0, n/2}];
    Table[a[n], {n, 30}] (* Andrey Zabolotskiy, Nov 11 2023, from eqs. (4.2), (4.3), and (2.14) by Jin et al. *)

Extensions

Terms a(16) and beyond from Andrey Zabolotskiy, Nov 11 2023