cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103163 a(n) = gcd(reverse(prime(n)), reverse(prime(n+1))).

This page as a plain text file.
%I A103163 #14 Jan 31 2020 15:05:26
%S A103163 1,1,1,1,1,1,1,1,4,1,1,1,2,2,1,5,1,4,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,
%T A103163 1,1,1,1,1,1,1,1,1,1,1,1,14,2,2,2,4,2,2,8,2,2,2,4,2,2,2,1,1,1,1,1,1,1,
%U A103163 1,1,1,1,1,1,1,1,1,13,8,2,2,2,2,2,2,8,2,2,4,4,2,2,2,2,1,5,5,25,5,5,5,5,5,5,25,5,5,5,1,2,2,4,4,4
%N A103163 a(n) = gcd(reverse(prime(n)), reverse(prime(n+1))).
%C A103163 Greatest common divisor of two consecutive primes after each prime is written backward.
%H A103163 Harvey P. Dale, <a href="/A103163/b103163.txt">Table of n, a(n) for n = 1..1000</a>
%F A103163 a(n) = gcd(A004087(n), A004087(n+1)).
%e A103163 Neither of these common divisors are divisible by 3 or by 10 or by 11.
%p A103163 A103163 := proc(n)
%p A103163     p := ithprime(n) ;
%p A103163     q := nextprime(p) ;
%p A103163     igcd(digrev(p),digrev(q)) ;
%p A103163 end proc:
%p A103163 seq(A103163(n),n=1..114) ; # _R. J. Mathar_, Sep 22 2018
%t A103163 rd[x_] :=FromDigits[Reversed[IntegerDigits[x]]]; Table[GCD[rd[Prime[w]], rd[Prime[w+1]]], {w, 1, 1000}]
%t A103163 GCD@@#&/@(Partition[IntegerReverse/@Prime[Range[120]],2,1]) (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jan 31 2020 *)
%Y A103163 Cf. A004087, A000040.
%K A103163 base,nonn
%O A103163 1,9
%A A103163 _Labos Elemer_, Jan 27 2005
%E A103163 Edited by _Jon E. Schoenfield_, Oct 26 2019