cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103224 Norm of the totient function phi(n) for Gaussian integers. See A103222 and A103223 for the real and imaginary parts.

This page as a plain text file.
%I A103224 #20 Feb 21 2020 07:07:23
%S A103224 1,2,4,8,8,8,36,32,36,16,100,32,80,72,32,128,160,72,324,64,144,200,
%T A103224 484,128,200,160,324,288,520,64,900,512,400,320,288,288,936,648,320,
%U A103224 256,1088,288,1764,800,288,968,2116,512,1764,400,640,640,2000,648,800,1152
%N A103224 Norm of the totient function phi(n) for Gaussian integers. See A103222 and A103223 for the real and imaginary parts.
%C A103224 See A103222 for definitions.
%C A103224 Multiplicative because the totient function on Gaussian integers is multiplicative and the norm is completely multiplicative. - _Andrew Howroyd_, Aug 03 2018
%H A103224 Amiram Eldar, <a href="/A103224/b103224.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)
%F A103224 a(n) = A103222(n)^2 + A103223(n)^2. - _Andrew Howroyd_, Aug 03 2018
%t A103224 phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Abs[Table[phi[n], {n, 100}]]^2
%o A103224 (PARI) \\ See A103222
%o A103224 CEulerPhi(z)={my(f=factor(z,I)); prod(i=1, #f~, my([p,e]=f[i,]); if(norm(p)==1, p^e, (p-1)*p^(e-1)))}
%o A103224 a(n)=norm(CEulerPhi(n)); \\ _Andrew Howroyd_, Aug 03 2018
%Y A103224 Cf. A103222, A103223, A103230.
%K A103224 nonn,mult
%O A103224 1,2
%A A103224 _T. D. Noe_, Jan 26 2005