This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103245 #23 Jan 05 2025 19:51:38 %S A103245 1,3,2,10,10,5,35,42,35,13,126,168,180,117,34,462,660,825,715,374,89, %T A103245 1716,2574,3575,3718,2652,1157,233,6435,10010,15015,17745,15470,9345, %U A103245 3495,610,24310,38896,61880,80444,80920,60520,31688,10370,1597,92378 %N A103245 Triangle read by rows: T(n,k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n. %D A103245 S. G. Guba, Problem No. 174, Issue No. 4, July-August 1965, p. 73 of Matematika v Skole. %H A103245 Michael De Vlieger, <a href="/A103245/b103245.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened). %H A103245 V. E. Hoggatt, Jr. and L. Carlitz, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-3/advanced5-3.pdf">Problem H-77</a>, The Fibonacci Quarterly, 5, No. 3, 1967, 256-258. %F A103245 T(n, k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n. %e A103245 Triangle begins: %e A103245 1; %e A103245 3, 2; %e A103245 10, 10, 5; %e A103245 35, 42, 35, 13; %e A103245 126, 168, 180, 117, 34; %p A103245 with(combinat): T:=(n,k)->binomial(2*n+1,n-k)*fibonacci(2*k+1): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %t A103245 Table[Binomial[2 n + 1, n - k] Fibonacci[2 k + 1], {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 01 2019 *) %Y A103245 Column 0 is A001700. %Y A103245 Column 1 is A024483. %Y A103245 T(n, n) = A001519(n+1) (the odd-indexed Fibonacci numbers). %Y A103245 Row sums are the powers of 5 (A000351). %Y A103245 Alternating row sums yield A054108. %K A103245 nonn,tabl %O A103245 0,2 %A A103245 _Emeric Deutsch_, Mar 19 2005